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• POPs were measured in toothed whales from the NW Iberian Peninsula.
• Bottlenose dolphin and harbour porpoise showed the greatest PCB concentrations.
• The POP levels were higher than in the South Atlantic and Pacific Oceans.
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Concentrations and patterns of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs)
in the blubber of the fivemost common toothedwhales off the Northwest Iberian Peninsula (NWIP), specifically
commondolphin, long-finnedpilotwhale, harbour porpoise, stripeddolphin and bottlenose dolphin,were inves-
tigated. The study revealed that differences in PCB and PBDE concentrations among the species are highly depen-
dent on age and sex but also on ecological factors such as trophic level, prey type and habitat. Of the five species
studied, bottlenose dolphin and harbour porpoise showed the greatest concentrations of PCBs. Both species
exceed the toxic threshold of 17 μg g−1 lipid weight (PCB Aroclor equivalent) for health effects on marine
mammals, for 100% and 75% of the individuals tested, respectively. Overall, the PCB and PBDE levels observed
in the NWIP toothed whales were of the same order of magnitude or lower than those reported by previous
studies in areas of the NE Atlantic. However, they are often higher than those for toothedwhales from the south-
ern Atlantic and Pacific Ocean.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Human activities in marine and coastal environments have intensi-
fied since the 1950s. Furthermore, reliance of human populations on
coastal areas for urban development and exploitation of marine
étes (LIENSs), UMRi 7266 CNRS-
2 La Rochelle Cedex 01, France.

. Méndez-Fernandez).
resources is predicted to keep increasing in the near future. The North-
west Iberian Peninsula (NWIP), situated at the northern limit of the NW
African upwelling system (Figueiras et al., 2002), is a good example of
such processes. Over the last fifty to sixty years, industrial development
and an increase in other human activities in the area have increased the
pressures on the marine environment. In this context, and to realise
the ambition of clean, productive and biologically diverse seas, the
European Community developed the Marine Strategy Framework
Directive (MSFD, Directive, 2008/56/EC of the European Parliament
and of the Council of 17 June 2008) the main objective of which is to
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deliver “Good Environmental Status” of European marine ecosystems
by 2020. To achieve this, better knowledge of the contamination status
of marine populations is needed, specifically in connection with both
Descriptor 8 and Descriptor 9 of the MSFD.

The persistent organic pollutants (POPs), including polychlorinated
biphenyls (PCBs) and pesticides (e.g. dichlorodiphenyltrichloroethane,
DDT) are among the primary pollutants of concern in marine ecosys-
tems cited on the OSPAR list of Chemicals for Priority Action (OSPAR,
2010); they are lipophilic synthetic organic compounds that have
been produced for industrial and agricultural purposes since the
1940s, or are by-products of other industrial processes developed over
a similar period of time. Although their production has been banned
since the end of the 1970s, PCBs can still be found in wildlife and
other environmental components e.g. sediments (OSPAR, 2010). Other
classes of organic chemicals are also of concern nowadays, notably
the brominated diphenyl ether formulations (PBDEs) (de Boer et al.,
1998) and thehexabromocyclododecanes (HBCDs) another brominated
flame retardant (e.g. Zegers et al., 2005). Marine mammals, as long-
lived apex predators, are at risk from these toxic compounds, since
they have a high bioaccumulation potential and biomagnify through
food webs (Aguilar et al., 1999). Due to their lipophilic nature, POPs
reach their highest concentrations in fatty tissues and, particularly, in
the hypodermic fat or blubber. Compared to most terrestrial mammals,
marinemammals appear to have a lower capacity tometabolize and ex-
crete lipophilic organochlorine compounds (Boon et al., 1992; Duinker
et al., 1989; Tanabe et al., 1988). This capacity is lower in toothedwhales
than in pinnipeds (seals and sea lions) (Tanabe et al., 1988), which
makes them especially vulnerable to POPs. Although information on
the actual effect of POPs on the health of marine mammals is scarce
(Reijinders et al., 1999), results from laboratory feeding studies and
field investigations have allowed the determination of several threshold
values for adverse effects (e.g. Kannan et al., 2000). The concentration of
contaminants in marine mammal tissues primarily varies in relation
to prey consumption, but there is also a function of their specific capac-
ity to transform these compounds to metabolised forms and/or ulti-
mately excrete the native form or the associated metabolites (Aguilar
et al., 1999). Other biological factors have also been found to be respon-
sible for variation in POP concentrations in marine mammals. These in-
clude body size and composition, nutritive condition, age, sex, health
status, duration of lactation, transfer from mother to offspring during
both pregnancy and lactation (Aguilar et al., 1999). Thus, since the up-
take of contaminants in marine mammals depends on the diet, feeding
habitat and biological factors, any interpretation of concentrations or
comparison between species would be incomplete without considering
as many of the factors as possible.

For many years, the concentration of contaminants in the NWIP has
been routinelymonitored through the analysis of samples of sediments,
seawater and commercial species such as shellfish (e.g. Carro et al.,
2002; Prego and Cobelo-García, 2003). Potentially toxic substances
have also occasionally been investigated in marine mammals since the
1980s, as part of the European funded BIOCET project (Murphy et al.,
2010; Pierce et al., 2008; Zegers et al., 2005) among others (Borrell
et al., 2001, 2006; Tornero et al., 2006), although to a lesser extent
than in other marine organisms from this area.

The overall objective of this study is to assess the contamination
status of the five most common marine mammals in the NWIP: the
common dolphin (Delphinus delphis), the long-finned pilot whale
(Globicephala melas), the harbour porpoise (Phocoena phocoena), the
striped dolphin (Stenella coeruleoalba) and the bottlenose dolphin
(Tursiops truncatus). This paper constitutes the first of a two part
study. In this first part we report on the PCB and PBDE concentrations
and patterns in these species, and evaluate their contamination status
in comparison with threshold values for health effects on marinemam-
mals aswell asmaking comparisonswith concentrations found in other
geographical areas. In Part II of this study, that will be subsequently
reported (Méndez-Fernandez et al., in press), we investigate the
concentrations of trace elements, which is another group of potential
contaminants in the NWIP, in the context of biological and ecological
factors.
2. Materials and methods

2.1. Sampling and study area

Samplingwas carried out in theNWIP, from the northern limit of the
Galician coast in Spain (43°3′N,7°2′W) to Nazaré on the Portuguese
coast (39°36′N, 9°3′W) (Fig. 1). Experienced members of the Spanish
(Coordinadora para o Estudo dos Mamiferos Mariños, CEMMA) and
Portuguese (Sociedade Portuguesa de Vida Salvagem, SPVS) stranding
networks have been attending stranded and by-caught cetaceans for
over twenty years and over ten years, respectively. Animals were
identified to species, measured, sexed and, if the decomposition
state of the carcass allowed, full necropsies were performed and
samples collected whenever possible. All procedures followed the
standard protocol defined by the European Cetacean Society (ECS), as
did the coding of decomposition state and condition (Kuiken and García
Hartmann, 1991).

A total of 172 stranded and by-caught individuals was selected for
this study, covering five toothed whale species (common dolphin, n =
114; long-finned pilot whale, n = 9; harbour porpoise, n = 19; striped
dolphin, n = 21 and bottlenose dolphin, n = 9) over the period 2004
to 2008. The common dolphin is the cetacean species stranded in the
greatest numbers; this is believed to reflect the relatively high abun-
dance in the area (Santos et al., 2013c) and the large number of individ-
uals being by-caught in NWIP fisheries (López et al., 2002, 2003). The
animals recovered in a “fresh” state (a score of 1 to 3 from the ECS pro-
tocol, i.e. originally stranded alive, freshly dead or mildly decomposed)
were selected. Teeth were extracted for age determination, gonads col-
lected for determination of reproductive status and blubber samples for
POP analyses. All blubber samples were taken from the left side in front
of the dorsal fin. Sampleswere entire vertical cross-sections of the blub-
ber so as to prevent any possible effects of stratification of the blubber.
The samples were wrapped separately in aluminium foil and after the
necropsies, all samples were stored frozen at −20 °C until required
for analysis.

Analysis of POPs is costly and the present study was budget-limited.
As such, effort was focused on the best sample sets (i.e. individuals for
which most data on other variables were available). Thus, in this part
of the study 120 blubber samples, out of a possible 172, were analysed
for PCBs (common dolphin, n = 81; long-finned pilot whale, n = 3;
harbour porpoise, n = 12; striped dolphin, n = 15 and bottlenose
dolphin, n = 7) and 20 for PBDEs (common dolphin, n = 19; harbour
porpoise, n = 1).
2.2. Age estimation and reproductive status

Age was estimated by analysing growth layer groups (GLGs) in the
dentine and cementum of teeth, following adapted methods based on
Lockyer (1993) and Hohn and Lockyer (1995). Teeth were decalcified
and sectioned at 25 μmusing a cryostat. The most central and complete
sections (including the whole pulp cavity) were selected from each
tooth, stained with Mayer's haematoxylin (modified by Grue) and
‘blued’ in a weak ammonia solution, mounted on glass slides and
allowed to dry. GLGs were counted under a binocular microscope. All
readings were made blind (without access to individual biological
data), and replicate counts were made by two readers. If the age
estimates obtained by the two readers differed by more than 1 year,
readings were repeated. If the increments were difficult to count, both
readers discussed the interpretation and either reached an agreed age
or judged the tooth to be unreadable.



Fig. 1.Map of the study area including the 100 and200m isobaths. The 200m isobathwas taken as the limit for the shelf-break. The black line contouring the coast represents the length of
the coastline which constituted the sampling area.
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2.2.1. Female reproductive status
Females were examined at the time of necropsy for evidence of

pregnancy and/or lactation. Formalin-fixed ovaries wereweighed,mea-
sured and sectioned at 2 mm intervals along the broad ligament.
The presence of mature follicles, corpora lutea and corpora albicantia
were recorded. Microscopic examination was conducted to confirm
macroscopic findings. Portions of ovary were paraffin-embedded and
sectioned at 5–8 μm, and sections were then stained with Mayer's
haematoxylin and eosin and examined by microscopy. Females were
classified as adults (mature) and juveniles (immature) based on the
presence/absence of ovarian structures.

2.2.2. Male reproductive status
Testes with attached epididymis were weighed, and a central cross-

section was formalin-fixed. Standard histological analysis of paraffin-
embedded sections was conducted. Sections were cut at 5–8 μm and
stained with Mayer's haematoxylin and eosin. Microscopic analysis
was conducted to measure the diameter of seminiferous tubules and to
record cell activity (Sertoli cells, interstitial tissue, and germinal cells
such as spermatogonia, spermatocytes, spermatids and spermatozoa).
Males were classified as adults (mature) and juveniles (immature)
based on seminiferous tubule diameter and cell activity.

2.3. Determination of persistent organic pollutants

2.3.1. Lipid determination
The total lipid content was determined using a modified Folch

et al. (1957) method. The samples were weighed (100–150 mg),
homogenised, and then extracted three times with a mixture of
chloroform:methanol (1:2, 2:1 and 4:1, v/v). A volume of 6.5 mL of
1% sodium chloride was added and the mixture separated into two
phases. The lower layer, containing the lipid and lipophilic compounds,
was collected and traces of water removed by addition of dry sodium
sulphate. These extracts were shaken and stored at 4 °C for 1 h. Centri-
fugation at 3000 g for 10 min was used to separate the organic extract
from the particulate material and the solvent was removed under a
stream of nitrogen in a water bath at 40 °C. When all solvent had evap-
orated, the weight of residue was determined and the lipid content
calculated by gravimetry.

2.3.2. Extraction and clean-up for PCB and PBDE analyses
Samples were extracted by Pressurised Liquid Extraction (PLE)

(Walsham et al., 2006). For each extraction, approximately 200 mg of
blubber was cut (in vertical sections), homogenised, and mixed with
sodium sulphate (~20 g). This mixture was spiked with appropriate
internal standards (PCBs by GC–MS: 13C-CB28, 13C-CB52, 13C-CB101,
13C-CB153, 13C-CB138, 13C-CB156, 13C-CB180, 13C-CB189, 13C-CB194
and 13C-CB209; PBDEs: FBDE1601). Samples were then refrigerated
overnight before being ground to a fine powder using a mortar and
pestle. Solvent-washed PLE cells (100 mL) were packed as follows:
solvent-washed filter paper, pre-washed sodium sulphate (10 g), 5%
deactivated alumina (30 g), solvent-washed filter paper and the
samples/sodium sulphate mixture prepared as above.

Samples were extracted by PLE using an ASE 300 (Dionex Ltd.,
Camberley, Surrey, UK) under elevated temperature (100 °C) and pres-
sure (1500 psi). Fiveminutes of heatingwas followed by 2× 5min stat-
ic cycles. The cell flush was 50% total cell volume (i.e. 25% of the cell
volume for each flush = 25 mL per flush) with a 120 s purge (using ni-
trogen) at the end of each sample extraction. The extraction solventwas
iso-hexane.

Special precautions were required when analysing PBDEs due to
their sensitivity to UV light. Specifically, incoming light was minimized
in the laboratory by placing UV filters over the windows.

Following PLE, the extract for PCB analyses was concentrated by
Syncore Analyst R-12 (fitted with flushback module) (Buchi UK Ltd,
Oldham, UK) to ~0.5 mL and passed through silica columns, before
transferring with washing to amber glass GC vials. For 20 samples the
extract was split in two, before being concentrated, one half for PBDE
analysis and the other one for PCB analysis. The concentrated extracts
were analysed for PCBs by Gas Chromatography Electron Impact Mass
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Spectrometry (GC–EIMS) and for PBDEs by Gas Chromatography Elec-
tron Capture Negative Ionization Mass Spectrometry (GC–ECNIMS).

2.3.3. Determination of PCBs by GC–EIMS
The concentrations of 32 PCB congeners (IUPAC PCB numbers 28, 31,

52, 49, 44, 74, 70, 101, 99, 97, 110, 123, 118, 105, 114, 149, 153, 132, 137,
138, 158, 128, 156, 167, 157, 187, 183, 180, 170, 189, 194, 209) were
determined by GC–EIMS using a HP6890 series gas chromatograph
interfaced with an HP5975 Mass Selective Detector, fitted with a
cool on-column injector and a 50 m × 0.22 mm × 25 μm SGE HT-8
column (SGE, Milton Keynes, UK). The initial oven temperature was
80 °C, which was held for 1 min. The temperature was raised by
20 °C min−1 up to 170 °C and held at this temperature for 7.5 min.
This was followed by a ramp of 3 °C min−1 up to a final temperature
of 290 °C which was maintained for 10 min. The MSD was set for
selective ion monitoring (SIM) with a dwell time of 50 ms. Calibration
standards containing all 32 PCB congeners and covering the concentra-
tion range 0.6–500 ngmL−1were analysed in triplicate, and the average
response used to compute the calibration curve. Correlation coefficients
of at least 0.99 were achieved for all PCBs.

2.3.4. Determination of PBDE by GC–ECNIMS
PBDEswere analysed and the concentrations of nine congeners, spe-

cifically BDE 28, 47, 66, 85, 99, 100, 153, 154 and 183, were determined
by GC–ECNIMS using an HP6890 Series gas chromatograph interfaced
with an HP5973N MSD, fitted with a cool on-column injector.

A Thames Restek STX-500 column (STX-500, 30 m × 0.25 mm i.d.,
0.15 μm film thickness, Thames Restek, Buckinghamshire, UK) was
utilised, fitted with a Thames Restek Siltek (0.53 mm i.d.) 5 m guard
column. The injector temperature was initially 120 °C and after 2 min
the temperature was elevated by 100 °C min−1 up to 300 °C at which
it was maintained until the end of the run. The carrier gas was helium,
set at a constant pressure of 15 psi. Methane was used as the reagent
gas at a pressure of 1.6 bar. The transfer line was held at 280 °C and
the ion source at 150 °C. Injections were made at 120 °C and the oven
temperature held constant for 2 min. Thereafter, the temperature was
raised by 15 °C min−1 up to 205 °C. This was followed by a ramp of
6 °C min−1 up to a final temperature of 330 °C. The MSD was set for
selective ionmonitoringwith a dwell time of 50ms. The ionsmonitored
were m/z 78.9 and 80.9 (ions equating to bromine) for all PBDEs.

2.3.5. Quality control
The methods employed were validated by the replicate analysis of

standards and samples, and through spiking experiments or analysis
of certified reference materials (CRMs). The limits of detection (LODs)
were determined through the repeated analysis of a low spiked sample
and calculated from4.65× SD (standard deviation) of themean concen-
tration (Cheeseman and Wilson, 1989). LODs were dependent on the
sample size. The replicate analysis of standards on separate days gave
coefficient of variation (CV%) of ~3% for PCBs analysed by GC–EIMS. Re-
coveries greater than 75% were achieved for PCBs and PBDEs spiked
samples and CRMs. Internal quality control procedures incorporated
the use of a laboratory reference material (cod liver oil; LRM) for all de-
terminants, and also a CRM for PCBs, in each batch of samples.
Procedural blanks were performed with each batch of samples, and
the final concentration adjusted accordingly. The data obtained from
the LRM were transferred onto NWA Quality Analyst. Thus Shewhart
charts were produced with warning and action limits (i.e. ±2× and
±3× the standard deviation of the mean, respectively). CRM data
were accepted if recoveries were between 70% and 120% of the certified
concentration. Quality assurance was further demonstrated through
successful participation in the Quality Assurance of Information for
Marine EnvironmentalMonitoring in Europe (QUASIMEME) Laboratory
Performance Studies. Finally, all POP concentrationswere normalized to
the lipid content (%) of the blubber.
2.4. Data treatment

All data submitted to statistical testswerefirst checked for normality
(Shapiro–Wilk test) and for homogeneity of variances (Bartlett test).
Non-parametric tests were applied since the distributions of response
variables were found to be non-normal and/or the homogeneity criteri-
on was not satisfied.

Prior to the treatment of the POP concentration data (μg g−1 lipid
weight), an age–gender classification of the individuals based upon
their sexual maturity was carried out for each species. The individuals
were then divided into four groups: adult male, adult female, juvenile
male and juvenile female. Hence, differences in the sum of the 32 PCB
congeners (ΣPCBs) were tested between species and age–gender
groups using the Kruskal–Wallis test followed by pairwise comparison
tests, with the exception of pilot whales and age–gender groups with
less than 2 individuals, which were excluded from the statistical treat-
ment. For the same reason, no statistical test was performed for the
sum of the 9 PBDE (ΣPBDEs) congeners.

We also verified the number of animals exceeding the toxic thresh-
old concentration (17 μg g−1 lipidwt.) for total PCBs determined for ad-
verse health effects inmarinemammals (Kannan et al., 2000). Since this
value was based on comparison with the main peaks in the commercial
PCB mixture Aroclor 1254, the PCB concentrations in the samples can-
not be compared directly to this limit and had to be converted. Aroclor
equivalent concentrations were estimated from the concentration of
the seven ICES PCBs (i.e. CB28, 52, 101, 118, 138, 153 and 180 as recom-
mended by the EU Community Bureau of Reference), bymultiplying the
sum of the concentrations for the seven ICES PCBs by 3 (i.e. total PCB
concentration [as Aroclor 1254] = 3.0 × sum of seven ICES congeners
in lipid weight) (Jepson et al., 2005).

The levels of significance for statistical analyses were always set
at α = 0.05 and analysis was performed using R version 3.0.1 (R
Development Core Team, 2010).

3. Results and discussion

3.1. Persistent organic pollutant concentrations and patterns

Persistent organic pollutants enter marine mammal tissues almost
exclusively via their food and the amounts in tissues vary greatly with
intake factors (Aguilar, 1989), i.e. trophic level, prey type, and with
the local environmental pollution. Thus, all these factors must be
taken into consideration when interpreting POP concentrations in ma-
rinemammals. The five toothed whale species studied here have rather
similar trophic levels in the NWIP, ranging from 4.3 to 5.3 (Méndez-
Fernandez et al., 2012). However, stomach contents and stable isotope
analyses revealed that these species feed on different prey types and
forage in different habitats (Méndez-Fernandez et al., 2012, 2013;
Santos et al., 2007, 2013a, 2013b, 2013c). In addition, marine mammal
organochlorine loads tend to increase with age during the juvenile
stage of both genders, because the uptake of pollutants usually exceeds
metabolism and excretion. In adult males, this pattern continues
throughout their life, while in adult females, the transfer of pollutants
to offspring during gestation and lactation progressively reduces pollut-
ant concentrations with age (e.g. Borrell et al., 1996; Covaci et al., 2002;
Wolkers et al., 2004). In this study, PCBswere detected in all five species
across age–gender groups and significant differences were found for
ΣPCB mean concentrations (μg g−1 lipid wt.) among them (Kruskal–
Wallis, H = 16.13, P b 0.01), with bottlenose dolphin showing the
highest ΣPCB concentrations followed by harbour porpoise. Pilot
whales, common dolphins and striped dolphins exhibited very similar
mean age/gender-specific PCB concentrations (Table 1), and as expect-
ed the adult males (not represented in bottlenose dolphins and pilot
whales) exhibited the highest ΣPCB concentrations (Table 1). However,
there was no significant between-species variation in their concentra-
tions (Kruskal–Wallis,H= 0.45, P= 0.5). In contrast, for adult females



Table 1
Age-/gender-specific PCB concentrations (mean ± SD, μg g−1 lipid weight), lipid content
(%) and age values expressed in years (mean ± SD) in blubber of common dolphin
(Delphinus delphis), pilot whale (Globicephala melas), harbour porpoise (Phocoena
phocoena), striped dolphin (Stenella coeruleoalba) and bottlenose dolphin (Tursiops
truncatus) from the North West Iberian Peninsula. AF: adult female, AM: adult male, JF:
juvenile female and JM: juvenile male, n = sample size.

Species and
age–gender group

n Age Lipid content CB153 ΣPCBa

Delphinus delphis 81 6.6 ± 5.4 60.6 ± 16.2 5.2 ± 5 17.2 ± 14.1
AF 11 14.4 ± 3.1 56.9 ± 17.5 2.5 ± 2.5 8.7 ± 8.1
AM 8 14.3 ± 3.8 40.5 ± 11.9 13.1 ± 8.2 38.9 ± 22.2
JF 20 3.4 ± 3.3 66.3 ± 13.8 3.7 ± 2.0 13.2 ± 6.3
JM 42 4.4 ± 3.1 62.5 ± 14.1 5 ± 4.3 16.9 ± 12.1

Globicephala melas 3 5.2 ± 5.5 65.2 ± 10.9 3.6 ± 4.1 16.2 ± 19.7
AF 1 11.5 77.3 0.4 2
JF 1 2.0 62.3 2.2 7.9
JM 1 2.0 56 8.3 38.7

Phocoena phocoena 12 7.0 ± 6.5 77.9 ± 13.9 6.3 ± 6.7 20.5 ± 20.4
AF 3 13.7 ± 6.2 76.8 ± 8.1 12.0 ± 9.7 37.5 ± 30.8
AM 1 18.0 53.7 16.6 ± 0 50.8
JF 5 2.8 ± 1.6 87.0 ± 13.7 2.9 ± 0.8 10.8 ± 2.8
JM 3 3.7 ± 1.2 71.7 ± 7.9 2.8 ± 1 9.4 ± 3

Stenella coeruleoalba 15 4.9 ± 5.5 61.1 ± 19.1 4.2 ± 5.1 15.7 ± 18.6
AF 2 14.0 65.6 ± 8.7 0.3 ± 0.01 1.8 ± 0.3
AM 1 15.0 50.1 10.7 36.4
JF 5 3.8 ± 3.5 65.7 ± 5.5 2.6 ± 1.6 9.9 ± 5.4
JM 7 1.6 ± 2.0 58.2 ± 27.6 5.5 ± 6.6 20.9 ± 24.4

Tursiops truncatus 7 3.8 ± 2.0 68.6 ± 9.3 15.2 ± 10.1 56.4 ± 35.2
JF 3 2.3 ± 1.6 71.8 ± 0.8 13.3 ± 8.8 48.9 ± 30.9
JM 4 4.9 ± 1.7 66.3 ± 12.4 16.7 ± 12.1 62.1 ± 41.8

a ΣPCB includes 32 congeners. See Materials and methods section for full list.

Fig. 2.Relative contribution of PCB congeners, grouped by the number of chlorine atoms in
the molecule, to the ΣPCB in blubber of Dde: common dolphin (Delphinus delphis), Gme:
pilotwhale (Globicephalamelas), Pph: harbour porpoise (Phocoena phocoena), Sco: striped
dolphin (Stenella coeruleoalba) and Ttr: bottlenose dolphin (Tursiops truncatus) from the
North West Iberian Peninsula.
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(not represented in bottlenose dolphins) therewere significantly higher
concentrations in harbour porpoise than in common and striped dol-
phin (post-hoc test, P b 0.05; Table 1). Significant differences were
found between juvenile bottlenose dolphins and juveniles of all the
other species (post-hoc, all P b 0.05). The high concentrations found
in juvenile bottlenose dolphins and adult harbour porpoises are in ac-
cordance with their coastal habitat, their proximity to areas with the
highest anthropogenic impact from contaminants, and their mainly
fish-feeding dietary habits in the NWIP (López et al., 2004; Méndez-
Fernandez et al., 2012; Pierce et al., 2010). In addition, both species
are more frequently seen in the southern part of the study area (López
et al., 2004; Pierce et al., 2010), which is more populated and industrial-
ized than the northern part. Thus, these ecological factorsmay be one of
the reasons for the high ΣPCB concentrations found for these two spe-
cies in the NWIP waters. Although pilot whales and striped dolphins
are observed in neritic habitats in the NWIP, especially for feeding
(Méndez-Fernandez et al., 2013), these cetacean species are mainly
associated with oceanic habitats, remote from land-based sources of
contamination (López et al., 2004; Méndez-Fernandez et al., 2012;
Pierce et al., 2010). In addition, pilotwhalesmainly feed on cephalopods
that generally, and depending on species, contain lower concentrations
of PCBs than fish from a similar geographic region (e.g. Storelli, 2008).

Their different ecological feeding patterns are also reflected in the
relative contribution of the distinct PCB congeners (Fig. 2). The mainly
cephalopod feeders and oceanic species, the pilot whale and the striped
dolphin, had a higher proportion of less chlorinated congeners (i.e. tri-,
tetra- and penta-chlorobiphenyls) than the other three species, which
had a greater proportion of highly chlorinated PCB congeners such as
hexa- and hepta-chlorobiphenyls. This finding can be explained by the
more efficient long-range transport of low-chlorinated PCBs through
both atmosphere and water (Beyer et al., 2000). Nevertheless, all
species showed a predominance of PCBs containing 5 ormore chlorines.
Hexachlorobiphenyls (56.3%) accounting for the highest percentage
across all 5 cetaceans, followed by heptachlorobiphenyls (26%) and
pentachlorobiphenyls (12.7%) (Fig. 2). In addition, among the
pentachlorinated congeners CB153 was the predominant followed by
CB138, 187 and 180. These results are in accordancewith the patterns ob-
served in cetacean species from different regions (e.g. Covaci et al., 2002;
Lailson-Brito et al., 2012; Leonel et al., 2012; Wafo et al., 2005).

Intra-specific differences were only found for common dolphin
(Kruskal–Wallis, H = 16.69, P b 0.05), which was the best represented
species (n = 81; Table 1). Specifically, the adult males showed signifi-
cantly higher concentrations than females (38.9 ± 22.2 and 8.7 ±
8.1 μg g−1 lipid wt., respectively; Table 1). This suggests that adult
females have a different accumulation pattern, which is consistent
with the well-described transfer of POPs from mother to offspring
during gestation and lactation discussed above.

The PBDE concentrations were almost 10 times lower than PCBs
in blubber for common dolphin and harbour porpoise and for all age–
gender groups (Table 2). This agrees with several previous studies on
toothed whales (Dorneles et al., 2010; Leonel et al., 2012; Nyman
et al., 2002; Pierce et al., 2008; Yogui et al., 2011). Of the 9 congeners
analysed, congener BDE85 was not detected in any sample and conge-
ners BDE28 and BDE183 were detected only in juvenile female and in
adult male, adult female and juvenile male of common dolphin, respec-
tively (Table 2). On average, BDE47 showed the highest concentrations
in both species and in all age–gender groups, following the samepattern
of variation asΣPBDE concentrations (Table 2). Similar profiles were re-
ported in other cetacean species from around the world (e.g. Dorneles
et al., 2010; Leonel et al., 2012; Weijs et al., 2009).

The concentrations of ΣPBDE of the juvenile males of both spe-
cies were similar, being slightly higher for harbour porpoise with
0.57 μg g−1 lipid wt. (n = 1) than for common dolphin with 0.31 ±
0.18 μg g−1 lipid wt. (n = 11). For common dolphin, adult males
were more contaminated than adult females with the adult male
group having the highest (0.71 ± 0.17 μg g−1 lipid wt.) and the adult
female the lowest (0.08 μg g−1 lipid wt.) mean concentrations. Similar
to PCBs, this result supports the hypothesis that adult female animals
reduce their PBDE concentrations through gestation and lactation. Be-
sides differences of ΣPBDE concentrations found between juvenile
males of both species, their patternswere also slightly different, namely
BDE47 N BDE100 N BDE154 N BDE99 N BDE153 N BDE66 N BDE183
for common dolphin and BDE47 N BDE100 N BDE99 N BDE154 N

BDE153 N BDE66 (BDE183 was not detected) for harbour porpoise.
The profiles found in the different age–gender groups of common
dolphin were similar. The pattern reported in harbour porpoise is
similar with those from other regions and from other cetacean species
(e.g. Boon et al., 2002; Leonel et al., 2012; Weijs et al., 2009). Thus, in



Table 2
Age-/gender-specific PBDE concentrations (mean ± SD, μg g−1 lipid weight), lipid content (%) and age values expressed in years (mean ± SD) in blubber of common dolphin (Delphinus
delphis) and harbour porpoise (Phocoena phocoena) from the NorthWest Iberian Peninsula. AF: adult female, AM: adult male, JF: juvenile female and JM: juvenile male, n = sample size.

Species/
age–gender
group

n Age Lipid
content

BDE28 BDE47 BDE66 BDE100 BDE99 BDE154 BDE153 BDE183 ΣBDEa

Delphinus
delphis

19 7.4 ± 5.1 59.9 ± 13.8 0.01 0.23 ± 0.19 0.004 ± 0.003 0.05 ± 0.04 0.02 ± 0.01 0.03 ± 0.01 0.012 0.001 ± 0.0002 0.34 ± 0.25

AF 1 16.0 63.4 nd 0.03 0.004 0.01 0.01 0.01 0.008 0.001 0.08
AM 2 15.5 ± 0.7 42.3 nd 0.44 ± 0.12 0.011 0.12 ± 0.45 0.04 ± 0.001 0.06 ± 0.003 0.03 ± 0.009 0.001 ± 0.00005 0.71 ± 0.17
JF 5 4.4 ± 3.0 70.8 ± 19.7 0.01 0.2 ± 0.3 0.003 ± 0.004 0.04 ± 0.41 0.01 ± 0.007 0.02 ± 0.01 0.007 ± 0.003 nd 0.33 ± 0.34
JM 11 6.5 ± 4.2 57.8 ± 7.8 nd 0.2 ± 0.13 0.003 ± 0.001 0.05 ± 0.03 0.02 ± 0.01 0.02 ± 0.008 0.01 ± 0.004 0.001 0.31 ± 0.18

Phocoena
phocoena

1 3.0 40.3 nd 0.48 0.004 0.08 0.04 0.02 0.009 nd 0.57

JM 1 3.0 40.3 nd 0.48 0.004 0.08 0.04 0.02 0.009 nd 0.57

nd = values were less than the limit of detection (see Materials and methods section).
The congener BDE85 was not detected in any individual analysed.

a ΣBDE includes 9 congeners. See Material and methods section for full list.
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general, the ΣPBDE concentrations were higher in common dolphin
than in harbour porpoise and congeners BDE28 and BDE 183 were
detected only in common dolphins', indicating that common dolphin
has difficulties with metabolizing PBDEs. However, we must consider
these results as only indicative due to the low number of samples
analysed for PBDEs.

3.2. Geographic comparison

The PCB concentrations of Iberian common dolphins from this study
are in the range reported by previous published studies in the NWIP, in
France and also in England. However these concentrations are much
higher than in common dolphins from Ireland and those from the
South Atlantic Ocean and from the Pacific Ocean (Table 3). It is impor-
tant to note that the PCB concentration in the Irish common dolphins
(2.8 μg g−1 lipid weight) is the mean value of only 5 PCB congeners:
CB118, 138, 153, 180 and 170. In the present study the sum of these
5 PCB congeners is 10.3 μg g−1 lipid weight. A different pattern was
found when a comparison was made with common dolphins from
the Mediterranean Sea and the east coast of the USA (NW Atlantic
Ocean); common dolphins from these areas were more highly contam-
inatedwith PCBs than those from theNWIP (Table 3). The PBDE concen-
trations from male and female common dolphins in the NE Atlantic
Ocean are lower than in other areas, especially when compared to dol-
phins from Korea in the Pacific Ocean.

Despite the small sample size for pilotwhale, the PCB concentrations
found in the NWIP are lower than in the rest of the NE Atlantic and
Ligurian Sea, with the exception of one male specimen from Ireland.
However, in this study carried out by Troisi et al. (1998) only 5 PCB con-
geners were analysed and the sum of these is also lower in Iberian pilot
whales than in Ireland (8.3 and 10.2 μg g−1 lipid weight, respectively).
In contrast, when the PCB concentrations in pilot whales from the NW
Atlantic and the Pacific Oceans are compared with the data from this
study, with the exception of females from Massachusetts (Tilbury
et al., 1999), the Iberian pilot whales contain higher concentrations
(Table 3).

Harbour porpoise and bottlenose dolphin contained the highest PCB
concentrations among the Iberian toothed whales. Comparing with
other areas across the worldwe observed that both species have in gen-
eral higher concentrations than seen in conspecifics from the Atlantic,
Pacific and Indian Oceans. There were exceptions; the North, Baltic
and Norwegian Seas for harbour porpoise and the Mediterranean Sea
for bottlenose dolphin. This indicates that those seas are highly contam-
inated with PCBs, as has been demonstrated by previously published
studies (Fossi et al., 2013; Pierce et al., 2008; Weijs et al., 2009, 2010).
Borrell et al. (2006) reported mean PCB concentrations in male and fe-
male bottlenose dolphins stranded in the South of the Iberian Peninsula
that were two times higher than in the present study (Table 3). These
high values may be a result of the proximity of the study area used
by Borrell et al. (2006) to the Mediterranean Sea. PBDE concentra-
tions in the only male harbour porpoise analysed in the present
study were lower than for males from other areas and, as for the
PCBs, North Sea porpoises.

Striped dolphins presented the lowest PCB concentrations among
the Iberian toothed whales but also when we compare with specimens
from other areas of the Northern Hemisphere (Table 3). Only one spec-
imen stranded on the coast of England showed similar concentrations to
those of the Iberian striped dolphins (Morris et al., 1989). Regarding
data from the Southern Hemisphere, the concentrations found in the
present study are higher than those reported in dolphins stranded on
the Brazilian coast. This difference in PCB levels between the Northern
and Southern Hemispheres is common to all five species studied
here, reflecting the highly industrialized development of the Northern
Hemisphere. PBDE concentrations were not analysed in striped dol-
phins from the NWIP. However, previously published studies showed
similar values across different areas of the Atlantic and Pacific Oceans,
with the exception of one female stranded on the coast of Japan which
contained only 0.08 μg g−1 lipid wt. of PBDEs and also only 3.2 μg g−1

lipid wt. of PCBs (Isobe et al., 2009).

3.3. Toxicological aspects

Reliable toxicity data for predatory marine mammals are scarce.
Instead, threshold levels are often extrapolated from terrestrial species,
since the effects of toxic compounds cannot be tested in free-living
animals because such experimental manipulations raise ethical consid-
erations (Das et al., 2003). Thus, although the validity of these extrapo-
lations could be questionable, they can be justified by the current lack of
better data. The harmful consequences of the bioaccumulation of POPs
in marine mammals include depression of the immune system (e.g. de
Swart et al., 1996; Ross, 1995), increased risk of infection and reproduc-
tive failure. Specifically, a total PCB concentration of 17 μg g−1 lipid wt.
has been reported as a threshold level above which there are health
effects in mammals (Kannan et al., 2000). This threshold was obtained
in laboratory mammals (seals, European otters and mink) fed with
field food items. In this study the threshold value was frequently
exceeded for all species, often with more than 50% of the individuals
(except pilot whale). However, this value was exceeded by all the
bottlenose dolphins and 75% of the harbour porpoises. This result is
evenmore important when it is considered in association with the pre-
vious study carried out in the Northeast Atlantic, including samples
from the NWIP. This showed that almost half of the harbour porpoises
for which cause of death was determined as being from pathological
causes, had significantly higher concentrations of all classes of POPs
than animals dying fromother causes (Pierce et al., 2008). PBDE concen-
trations measured in common dolphins and harbour porpoises from



Table 3
Mean ± SDof PCB and PBDE concentrations (μg g−1 lipidweight) in blubber of the five toothedwhale species from all over theworld. Sample size “n” of each species by sex and area is in
brackets.

Species Area Sex ΣPCB ΣPBDE References

Delphinus delphis NE Atlantic Ocean
NWIP M 20.4 ± 16.1 (50) 0.51 ± 0.17 (13) This study
NWIP F 11.6 ± 7.2 (31) 0.205 ± 0.34 (6) This study
Spain F 10.9 ± 11.6 (23) 0.42 ± 0.18 (23) Pierce et al. (2008)
Spain M 37.8 ± 18.9 (33) Borrell et al. (2001)
Spain F 23.9 ± 17.7 (23) Borrell et al. (2001)
France F 13.7 ± 12.7 (36) 0.61 ± 0.41 (36) Pierce et al. (2008)
Ireland M 2.8a Troisi et al. (1998)
Ireland F 3.6 ± 3.4 (11) 0.76 ± 0.5 (11) Pierce et al. (2008)
England F 20.2 ± 16.7 (43) Law et al. (2013)

Mediterranean Sea
Spain M 54.3 ± 22.7 (11) Borrell et al. (2001)
Spain F 23.8 ± 32.8 (11) Borrell et al. (2001)

NW Atlantic Ocean
USA M 36.5 ± 4.0 (4) Kuehl et al. (1991)

SE Atlantic Ocean
South Africa M 5.9 ± 5.05 (10) de Kock et al. (1994)
South Africa F 2.8 ± 1.7 (7) de Kock et al. (1994)

SW Atlantic Ocean
Brazil⁎ M 17.0 (1) Kajiwara et al. (2004)
Brazil⁎ M 14.6 ± 15.3 (2) Lailson-Brito et al. (2012)
Brazil⁎ F 2.2 ± 0.7 (2) Lailson-Brito et al. (2012)

Pacific Ocean
NE Australia F 0.6 (1) Vetter et al. (2001)
New Zealand M 0.8 ± 0.5 (12) Stockin et al. (2007)
New Zealand F 0.14 ± 0.13 (7) Stockin et al. (2007)
Korea M 15.0 ± 7.6 (12) 1.7 ± 0.78 (12) Moon et al. (2010)
Korea F 15.0 ± 7.8 (10) 1.6 ± 0.68 (10) Moon et al. (2010)

Globicephala melas NE Atlantic Ocean
NWIP M 38.7 (1) This study
NWIP F 4.9 ± 4.2 (2) This study
France nd 189.0 ± 298.0 (7)b Alzieu and Duguy (1979)
Ireland M 10.2a Troisi et al. (1998)
Faroe Islands M 48.8 ± 23.1 (52) 2.4 (21) Borrell (1993);

Lindström et al. (1999)
Faroe Islands F 26.3 ± 23.1 (159) 1.6 (32) Borrell (1993);

Lindström et al. (1999)
Ligurian Sea nd 125.0 (1)b Marsili and Focardi (1997)

NW Atlantic Ocean
Canada M 9.0 ± 3.8 (5) Muir et al. (1988)
Canada F 3.5 ± 3.3 (9) Muir et al. (1988)
Massachusetts M 12 ± 2.7 (6)c Tilbury et al. (1999)
Massachusetts F 6.1 ± 1.1 (16)c Tilbury et al. (1999)

Pacific Ocean
Tasmania M 0.41 ± 0.04 (21) Weijs et al. (2013)
Tasmania F 0.36 ± 0.26 (33) Weijs et al. (2013)

Phocoena phocoena NE Atlantic Ocean
NWIP M 19.8 ± 20.8 (4) 0.57 (1) This study
NWIP F 20.8 ± 21.6 (8) This study
NW Spain F 5.3 ± 4.2 (3) 0.28 ± 0.04 (3) Pierce et al. (2008)
France F 13.8 ± 10.6 (2) 1.4 ± 0.94 (2) Pierce et al. (2008)
Ireland M 6.2 (1)a Troisi et al. (1998)
Ireland F 0.53 ± 0.5 (12) 0.66 ± 0.49 (12) Pierce et al. (2008)
Scotland M 13.1 (21)d Wells et al. (1994)
Scotland F 10.5 ± 13.1 (31) 1.4 ± 1.3 (31) Pierce et al. (2008)
South England M 23.4 ± 21.6 (2) 2.1 ± 1.6 (21)d Law et al. (2006, 2010)
East England M 11.6 ± 9.7 (23) Law et al. (2010)
Southern North Sea M 46.4 ± 30.7 (21) Law et al. (2010)
Southern North Sea F 15 ± 8.6 (19) 1.06 ± 0.8 (19) Pierce et al. (2008)
Baltic Sea M 31 ± 18.5 (17) Berggrena et al. (1999)
Norwegian Sea M 15 ± 11 (8) Berggrena et al. (1999)
Faroe Islands M 13.4 ± 2.4 (3) Borrell (1993)
Faroe Islands F 8.8 ± 1.05 (3) Borrell (1993)
Greenland M 2.4 (32) Borrell et al. (2004)
Greenland F 1.7 (43) Borrell et al. (2004)

NW Atlantic Ocean
Canada M 13.2 ± 9.9 (45) Westgate et al. (1997)
Canada F 9.3 ± 5 (43) Westgate et al. (1997)
Boston M 33.6 (2) Tilbury et al. (1997)
Maine (Canada) F 15.8 (1) Tilbury et al. (1997)

Pacific Ocean
North Pacific M 18.2 ± 16.6 (17) Calambokidis and Barlow (1991)
North Pacific F 11.7 ± 10.0 (26) Calambokidis and Barlow (1991)
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Table 3 (continued)

Species Area Sex ΣPCB ΣPBDE References

Stenella coeruleoalba NE Atlantic Ocean
NWIP M 22.8 ± 23.3 (8) This study
NWIP F 7.6 ± 5.9 (7) This study
England and Wales 20.0 (1) 0.45 (1) Morris et al. (1989); Law et al. (2003)

Mediterranean Sea
Spain M 65.6 ± 40.5 (15) Borrell and Aguilar (2005)
Spain F 90.0 ± 70.7 (5) Borrell and Aguilar (2005)
France M 57.7 ± 41.9 (19) Wafo et al. (2012)
France F 45.3 ± 45.7 (12) Wafo et al. (2012)
Italy M 215.3 (33)b Marsili and Focardi (1997)
Italy F 92.8 (26)b Marsili and Focardi (1997)

NW Atlantic Ocean
USA – 59.0 (3) 0.66 (1) Taruski et al. (1975);

Johnson-Restrepo et al. (2005)
SW Atlantic Ocean
Brazil⁎ M 12.7 ± 9.6 (3) 0.81 ± 0.47 (3) Leonel et al. (2012)
Brazil⁎ F 5.3 ± 7.8 (6) 0.54 ± 0.45 (6) Leonel et al. (2012)

Pacific Ocean
Japan M 25.3 ± 7.2 (20) 0.36 ± 0.28 (20) Isobe et al. (2009)
Japan F 3.2 (1) 0.08 (1) Isobe et al. (2009)

Tursiops truncatus NE Atlantic Ocean
NWIP M 62.1 ± 41.8 (4) This study
NWIP F 48.9 ± 30.9 (3) This study
South Spain M–F 182.6 ± 90.8 (5) Borrell et al. (2006)
South Portugal M–F 75.3 ± 39.4 (7) Borrell et al. (2006)
Canary Islands M 12.7 ± 10.7 (6) Carballo et al. (2008)
Canary Islands F 2.9 ± 4.3 (3) Carballo et al. (2008)
West Ireland 5.01 ± 6.0 (6) Berrow et al. (2002)
Scotland M 13.6 (1)d SOAFD datae

Scotland F 11.0 (5)d Wells et al. (1994)
Wales M 290.0 (3) Morris et al. (1989)
Wales F 760.0 (1) Morris et al. (1989)

Mediterranean Sea
Spain M–F 167.8 ± 99.5 (13) Borrell et al. (2006)
Balearic Islands M–F 117.3 ± 104.1 (7) Borrell et al. (2006)
Italy M 1192 (5)f Corsolini et al. (1995)
Italy F 587 (2)f Corsolini et al. (1995)

NW Atlantic Ocean
North Carolina M 53.3 (17) Hansen et al. (2004)
North Carolina F 11.6 (14) Hansen et al. (2004)
South Carolina M 50.4 (5) 0.98 (35) Hansen et al. (2004); Fair et al. (2010)
South Carolina F 8 (6) 5.9 (11) Hansen et al. (2004); Fair et al. (2010)
Florida M 20 (9) 1.5 (31) Hansen et al. (2004); Fair et al. (2010)
Florida F 12.6 (2) 0.58 (15) Hansen et al. (2004); Fair et al. (2010)

SE Atlantic Ocean
Rio de Janeiro M 11.8 ± 2.4 (2) Lailson-Brito et al. (2012)
São Paulo M 5.9 (1) 0.06 (1) Yogui et al. (2010, 2011)

SW Atlantic Ocean
South Africa M 2.6 ± 3.3 (5) de Kock et al. (1994)
South Africa F 1.6 (1) de Kock et al. (1994)

Pacific Ocean
Australia M–F 0.06 (6) Kemper et al. (1994)

Indian Ocean
Bay of Bengal, India M 1.2 (2) Tanabe et al. (1993)
Bay of Bengal, India F 0.75 (2) Tanabe et al. (1993)

⁎ Delphinus delphis and Stenella frontalis.
a Sum of 5 PCB congeners: CB118, 138, 153, 180 and 170.
b Values expressed on a dry weight basis (from lyophilized tissue).
c SEM (standard error of the mean).
d As Aroclor 1254 formulation.
e SOAFD data (Scottish Office Agriculture and Fisheries Department).
f Values expressed on a wet weight basis.
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this study are at least 10 times lower than those of PCBs, being slightly
higher for harbour porpoise than common dolphin. There is still no in-
formation on a toxic threshold for PBDEs in marinemammals, although
experimental exposure investigations revealed that PBDEs induce a
wide variety of disorders in mammals (e.g. cancer, reproductive and
developmental toxicity, endocrine disruption and central nervous sys-
tem effects; Hana et al., 2004). As such it is not possible to say whether
or not such concentrations are likely to impact on the toothed whales.
However, what needs to be considered is that the PBDEs are present
and have augmented the overall concentration of POPs in these whales.
In future studies consideration should be given to the possible cumula-
tive impacts of the range of contaminants found in thesemarine animals.

4. Conclusions

The inter-species differences found in the present study, covering
the accumulation and patterns of POPs, illustrate the important influ-
ence of both the biological and ecological factors of each species in de-
termining the contaminant loading. Overall, the POP concentrations
observed in toothed whales from the NWIP were the same order of
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magnitude or lower than those reported by previous studies in areas of
the NE Atlantic. However, they were higher than those of toothed
whales from the southern Atlantic Ocean and Pacific Ocean.

The bottlenose dolphin and harbour porpoise are recorded in the EU
Habitats Directive as Species of Special Interest (Directive 92/43/CEE),
the protection of which requires the designation of Special Areas of
Conservation (SAC) by EU Member States. In the present study both
species seem to be the more contaminated with PCBs as shown by
their higher concentrations when compared to the other three species.
Their PCB concentrations also raise particular concern as they are
much higher than the threshold level for PCB concentrations associated
with adverse health effects on marinemammals. This study adds to our
knowledge of POP concentrations inmarinemammals that frequent the
NWIP waters, complementing the existing database on these chemical
contaminants in this area. However, nowadays there remains a lack of
information on concentrations of other organochlorine compounds of
special concern, and this should be addressed through further studies.
This is particularly relevant given that the European scientific communi-
ty is developing research on large marine vertebrates as indicators of
medium and long termmarine environmental change for incorporation
under the Marine Strategy Framework Directive. A complete database
of chemical contaminants inmarinemammals of the NWIP is an impor-
tant step forward.
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