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INTRODUCTION

Polychlorinated biphenyls (PCBs) are strictly anthro-
pogenic chemicals that constitute one of the most
problematic and widespread group of contaminants.
These xenobiotics, represented by 209 congeners, are
extremely resistant to degradation (physico-chemical
or biological), are bioconcentrated by living organisms,
and can cause various adverse effects depending on
their pattern and degree of chlorine substitution (Met-
calfe 1994). For PCBs entering the marine environ-
ment, bottom sediments are the ultimate repository
where they may become a source for uptake by marine
organisms through direct or indirect contact or, for fil-
ter-feeders, by ingestion; however, information about
their impact on benthic species is relatively scarce
(Chapman 1995, Carr et al. 1996, Wood et al. 1997).

According to various authors, the asteroid Asterias
rubens qualifies as an excellent bioindicator organism
for monitoring heavy metal contamination in the North
Sea and NE Atlantic benthic ecosystems (Knickmeyer
et al. 1992, den Besten et al. 1993, Everaarts et al. 1998,
Temara et al. 1998, Warnau et al. 1999). It is indeed a
widely distributed and abundant key species (sensu
Lewis 1978) that is easy to collect, identify and main-
tain in the laboratory. In addition, A. rubens is a top
predator, feeding mainly on mussels, and lives on or in
proximity to bottom sediments, which are the main
reservoir of many contaminants, including PCBs. The
biological and ecological characteristics of A. rubens
as well as its potential economic impact (as a predator
of commercially important mussels) have led some
authors to use this species as a tool to assess the degree
of PCB contamination in the North Sea (den Besten et
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al. 1989, 1993, Everaarts et al. 1998). However, to the
best of our knowledge, no study has investigated PCB
bioaccumulation processes in A. rubens. The only 2
experimental studies investigating PCB bioaccum-
ulation in echinoderms concern sea urchins exposed
to contaminated sediments (Weisberg et al. 1996,
Schweitzer et al. 2000), and only Weisberg et al. (1996)
examined the kinetic aspects of PCB uptake.

Such data are however needed to further assess the
value of Asterias rubens as a bioindicator of PCB con-
tamination. Therefore, in the present study, we have
investigated the kinetics of PCB uptake in A. rubens
exposed either to the contaminant in seawater or asso-
ciated with sediments, i.e. the 2 extreme pathways
of contamination from the viewpoint of absolute
PCB concentrations. Indeed, the high hydrophobicity
of PCBs result in a characteristic partitioning, with con-
centrations in natural seawater typically in the range of
pg to ng l–1 while sediment concentrations are in the
range of µg to mg kg–1 (see Table 1). The PCB con-
gener IUPAC #153 (2,2’,4,4’,5,5’ hexachlorobiphenyl)
was selected because it is the most abundant in marine
biota (Stebbing et al. 1992) and has been shown to
be an excellent indicator of total PCB contamination
(Atuma et al. 1996).

MATERIALS AND METHODS

Sampling. Sea stars Asterias rubens (Linnaeus, 1758)
were collected in April 1999 from the intertidal zone at
Audresselles (Pas-de-Calais, France). Prior to experi-
mentation, specimens were acclimated to laboratory
conditions for 1 mo in constantly aerated closed-circuit
aquaria (salinity 36‰, T 16 ± 0.5 °C, 12/12 h dark/light
cycle).

In order to follow PCB#153 bioaccumulation under
realistically simulated conditions, a 14C-labelled con-
gener was used and measured using highly sensitive
β-spectrometry.

Radiotracer. The 14C-labelled 2,2’,4,4’,5,5’ hexa-
chlorobiphenyl (purity ≥95%) was purchased from
Sigma Chemicals, USA. Specific activity was 925 MBq
mmol–1. Stock solutions were prepared in acetone at a
concentration of 1 µg ml–1.

Sample treatment and liquid scintillation counting.
Water samples (2 ml) were directly transfered to 20 ml
glass scintillation vials (Packard) and 10 ml of Ultima
Gold XR® (Packard Instruments) scintillation liquid
were added. Samples of sediment and sea star tissue
(previously crushed) were placed in a vial containing
2 ml of Acetonitrile® in an ultrasonic bath for 10 min.
Acetonitrile® was then collected and replaced by an-
other 2 ml of Acetonitrile® and the ultrasonic operation
was repeated a second time. This treatment gave 4 ml

of liquid phase (viz. the extraction) and a residue. The
residue was digested overnight at 70°C with 2 ml of
Soluene®, and 10 ml of Hionic Fluor® scintillation liquid
were then added. The liquid phase (4 ml) was added to
16 ml of filtered seawater and extracted twice using 2 ml
of n-Hexane (Sigma) under constant agitation. The
organic phase (4 ml) and the aqueous phase (20 ml)
were treated separately. The entire organic phase and
2 ml of the aqueous phase were each added separately
to 10 ml of Ultima Gold XR® scintillation liquid.

14C-radioactivity was then measured using a 1600 TR
Liquid Scintillation Analyzer (Packard), compared to
standards of known activities, and corrected for quench-
ing, background and physical decay of the radiotracer.
Counting times were adjusted to obtain counting rates
with relative propagated errors less than 5%. PCB
concentrations were expressed on a total lipid content
basis, whereby lipids were determined according to the
method of Barnes & Blackstock (1973). A schematic
diagram of the sample treatment is shown in Fig. 1.

Experimental procedures. Uptake from seawater
and sediments was measured as follows.

Uptake from seawater: Asteroids (n = 24) were
placed for 34 d in a 70 l glass aquarium (constantly aer-
ated closed-circuit aquaria; salinity 36‰, T 16 ± 0.5°C,
12/12 h dark/light cycle) containing natural seawater
spiked with 14C-labelled PCB#153; 1 d prior to the
experiments, four 5 l glass beakers were filled with
filtered seawater (36‰, 16 ± 0.5°C), spiked with the
radiolabelled PCB stock solution, and constantly
stirred using an orbital agitation plate. Contaminated
water was then poured into the glass aquaria, and
uncontaminated seawater was added to obtain a final
volume of 70 l. Sea water and radiotracer were
renewed every second day during the entire experi-
ment. Activity was checked before and after each
renewal to assess the stability of the labelled PCB con-
centration in the seawater (Table 1). The sea stars were
fed unlabelled mussels Mytilus edulis every second
day just before seawater renewal. After 2 h, un-
ingested mussels were removed to limit PCB incorpo-
ration via the food as much as possible. Periodically
(after 2, 4, 7, 11, 14, 21 and 34 d), sea stars (n = 3) were
removed, dissected into 7 body compartments (oral
and aboral body walls, central digestive system,
gonads, rectal caeca, pyloric caeca, and podia), and
radioanalyzed to determine uptake kinetics and body
distribution of the incorporated PCB.

Uptake from sediments: Sediments (2.5 kg dry wt)
from the North Sea (Audresselles, Pas-de-Calais,
France) were contaminated for 4 d with the 14C-
labelled PCB using the rolling-jar method (jars con-
stanty stirred on an orbital agitation plate) (Murdoch et
al. 1997). Sea stars (n = 24) were placed in a 70 l glass
aquarium (constantly aerated open circuit aquarium;
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salinity 36‰, T 16 ± 0.5°C, 12/12 h dark/light cycle)
containing a 10 cm layer of seawater running over a
2 cm layer of spiked sediments. A separate group of 5
sea stars was placed in the same aquaria, but in an-
other compartment (not in contact with the sediments),
to serve as a control for possible cross-contamination
through seawater. The sea stars were fed every second
day with mussels Mytilus edulis. Uningested food was
removed after 2 h. The radioactivity of the labelled
PCB was measured weekly in the sediments to check
for possible leaching (Table 1). Periodically (after 2, 4,
7, 11, 14, 21, and 34 d), 3 individuals were removed,
dissected as described above, and their tissues counted
for radioactivity.

Data analyses. Uptake of the PCB con-
gener from seawater and sediments was
expressed as change in PCB concentra-
tion (ng g–1 total lipids) over time. Uptake
kinetics were described either by using a
saturation exponential model (Eq. 1), a
single-component exponential model
(Eq. 2), or a combined model (logistic and
single-component exponential) (Eq. 3):

C(t) =  Css (1 – e–kt) (1)
C(t) =  C(0) ekt (2)
C(t) =  Css (1 – e–kt) / 1 + e–k(t – I) (3)

where C(t), C(0), and Css are the PCB
concentrations (ng g–1 total lipids) at
Time t (d), at Time 0 and at steady state,
respectively, k is the rate constant (d–1),
and I is the time (d) at the inflexion point.
The model showing the best fitting ac-
curacy (based on the calculation of the
determination coefficient, R2, and exami-
nation of the residuals) was used.

Constants of the different models and
their statistics were estimated by iterative
adjustment of the models and Hessian
matrix computation, respectively, using
the nonlinear curve-fitting routines in the
Systat® 5.2.1 software (Wilkinson 1988).
Differences between PCB concentrations
in the different sea star body compart-
ments were tested by 1-way ANOVA and
the multiple comparison test of Tukey (Zar
1996). Changes in PCB body distribution
were tested for significance using the G-
test (adapted from the log-likelihood ratio
test) for 2 × k contingency tables (Zar
1996). Prior to the latter test, data were
arcsine-transformed using the correction
of Freeman-Tukey (1950; described by
Zar 1996). The level of significance for
statistical tests was always set at α = 0.05.

RESULTS

The uptake of PCB#153 by Asterias rubens was
investigated through separate exposures to contami-
nated seawater or sediments. As differences between
accumulation kinetics in aboral and oral body walls
were never found in any experiment (p always >0.1),
these 2 compartments were pooled and are presented
as a single compartment (body wall) throughout the
text. The uptake kinetics of PCB congener #153 in 6
different body compartments (body wall, central diges-
tive system, gonads, rectal caeca, pyloric caeca, podia)
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are shown in Figs. 2 & 3 for the seawater and sediment
exposures, respectively.

Contamination via seawater

Depending on the body compartment, accumulation
from seawater was best described by a combined
(logistic and exponential) model (viz. uptake in body
wall, gonads, pyloric caeca, and podia) or a single-
component exponential model (viz. uptake in central
digestive system and rectal caeca) (Fig. 2, Table 2). 

The body wall was the compartment that concen-
trated 14C-PCB#153 to the greatest degree, up to 2
orders of magnitude higher than the rectal caeca
(pTukey test ≤ 0.0001; Table 3). 

Body distribution of incorporated 14C-PCB#153
varied significantly along the timecourse of the ex-
periment (pG-test < 0.05). Initially, the contaminant
was mostly present in the podia (74 ± 5% of total body
load after 2 d exposure) and secondarily in the body
wall (26 ± 5%). Progressively, the proportion of the
PCB associated with the body wall increased, reaching
69 ± 5% of the total body burden after 34 d of expo-
sure, while during the same time the podia proportion
decreased to 7 ± 2% (Table 4). 

Contamination via sediments

Frequent radioanalysis of the contaminated sedi-
ments indicated that the maximum difference between
measured 14C-PCB#153 activities was 13.1% and that
no significant decreasing trends occurred; therefore,
concentrations in labelled PCB remained relatively
stable throughout the 34 d long experiment (9.5 ±
1.1 ng g–1 dry wt; see Table 1). Similarly, radioactivity
in the seawater and in control sea stars remained
below the detection limit, indicating that no significant
14C-PCB was incorporated from suspended sediments
possibly ingested by the mussels on which they fed nor
from seawater due to cross-contamination.

Accumulation from contaminated sediments was
best described either by a single-component exponen-
tial model (gonads), a saturation exponential model
(podia), or a combined model (body wall, central diges-
tive system, rectal caeca and pyloric caeca) (Fig. 3,
Table 2). As noted during the seawater exposure, body
wall and podia were the body compartments that accu-
mulated 14C-PCB#153 to the highest levels when
exposed to labelled sediments (Table 5).

The distribution of 14C-PCB in sea star tissues was
determined at different times during the timecourse of
the experiment. Relative transfers among body com-
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Table 1. Characteristics of background and added concentrations of PCB#153. Background concentrations were measured in sea-
water, sediments and sea stars (body wall and pyloric caeca) the day before starting the experiment; added concentrations were mea-
sured in subsamples of seawater and  sediments regularly collected during laboratory microcosm throughout the experiment. Ranges
of values of PCB#153 (unless specified otherwise) reported for seawater and sediments in the field are given for comparison.
sum7: sum of concentrations of the 7 PCB congeners typically recommended by international organisations such as NSTF and EU; 

sum hexa: sum of hexachlorinated congeners

Compartment PCB conc. Location Source

Background
Seawater (ng l–1) 0.026 (n = 6)
Sediments (ng g–1 dry wt) 0.017 (n = 6)
Body wall (ng g–1 lipids) 559 ± 17 (n = 6)
Pyloric caeca (ng g–1 lipids) 522 ± 167 (n = 6) Southern North Sea Present study

Added
Seawater

dissolved + particulate (ng l–1) 31.4 ± 15.6 (n = 36)
Sediments (ng g–1 dry wt) 9.49 ± 1.14 (n = 12)

Field values
Seawater 

dissolved (pg l–1) 0.1–67.2 Baltic Sea Shultz-Bull et al. (1995)
dissolved + particulate (ng l–1) 0.8–8.7 (Aroclor 1260) Atlantic Ocean Harvey & Steinhauer (1976)

1.5–38.0 (Phenoclor DP-5) Mediterranean French coasts Elder (1976)
0.2–370 (Phenoclor Mediterranean and Atlantic Marchand et al. (1990)

DP-5/DP-6) French coasts
0.34–4.93 (sum hexa-CB) Marmara Sea Telli-Karakoç et al. (2002)

extreme hot spot (µg l–1)

dissolved: 1.8 ± 0.3 New Bedford Harbor, USA Bergen et al. 1996
particulate: 14 ± 3.9 µg l–1

Sediments (ng g–1 dry wt) 22–4060 North Sea, German Bight Stebbing et al. (1992)
0.27–47 (sum7 PCB) North Sea, Dutch coastal zone Boon et al. (1985)
2.2–32 (sum7 PCB) North Sea, Dutch coastal zone Laane et al. (1999)








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Fig. 2. Asterias rubens. Seawater experiment. Uptake of 14C-PCB#153 from seawater by different body compartments (mean 
concentration in ng g–1 total lipids ± SD, n = 3). C(t): concentration at Time t

Fig. 3. Asterias rubens. Sediment experiment. Uptake of 14C-PCB#153 from sediments by different body compartments of the 
sea star (mean concentration in ng g–1 total lipids ± SD, n = 3)
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partments appeared to be quite different from those
observed during the seawater uptake experiment.
Indeed, the proportion of contaminant in the body wall
and podia remained relatively constant throughout the
experiment. Body wall and podia contained the major
part (ca. 60%) of the total body burden of 14C-PCB,
while the lowest percentage was found in the rectal
caeca (≤0.3%) (Table 4).

DISCUSSION

The present study reports the first experimental data
on the bioaccumulation kinetics of a key PCB congener
in the sea star Asterias rubens, a common species
widely distributed in the North Sea and NE Atlantic.
The fact that organisms were also exposed to very
low background concentrations of stable PCB#153
(Table 1) showed that they were actually exposed to a
global concentration of PCB#153 that did not differ
significantly from the 14C-PCB concentrations added
experimentally to seawater or sediments (Table 1). The
experimental concentrations in the seawater were

higher than those usually reported for PCB#153 in
natural North Sea waters. However, the latter concen-
trations most generally concern the dissolved fraction,
whereas our measurements involved both dissolved
and particulate fractions. Although available PCB data
on bulk seawater samples mostly concern the sum of
congeners or PCB mixture equivalents, it is noteworthy
that the experimental concentrations used here were
quite close (even much lower if considering extreme
hot spots) to values reported for moderate to highly
contaminated marine locations (Table 1). In addition,
the ratio between seawater and sediment PCB concen-
trations added was similar to the ratio between the
background PCB concentrations measured in seawater
and sediments used in the experiments (Table 1).
Therefore, the experimental exposures can be consid-
ered acceptable simulations of field-exposure situa-
tions that may actually occur in the field.

Data on PCB concentrations in Asterias rubens in the
field are scarce, and even fewer are available for con-
gener-specific data (e.g. Everaarts et al. 1998, den
Besten et al. 2001). It is noteworthy that the total
PCB#153 concentrations (background + incorporated)

reached in the pyloric caeca at the end
of our experiments matched the con-
centrations reported in the same organs
of sea stars from moderate to highly
contaminated North Sea locations
(Table 6). No field data were found con-
cerning PCB concentrations in the body
wall. In regard to the whole body, PCB
concentrations reached in experimen-
tally exposed sea stars were 2 to 10
times higher than the few data avail-
able from the literature (Everaarts &
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Table 2. Asterias rubens. Parameters and statistics of equations describing uptake of 14C-PCB #153 from seawater and sediments
by in body compartments. E (exponential model): C(t) = C0ekt; S (saturation model): C(t) = Css(1 – e–kt); C (combined model):
C(t) = Css(1 – e–kt)�(1 + e–k(t – I )); where C0, C(t), Css = 14C-PCB #153 concentrations (ng g–1 lipids) at Time 0, at Time t (d) and at
steady-state respectively, k-rate constant (d–1); I = time (d) at inflexion point; ASE = asymptotic standard error; R2 = corrected 

determination coefficient

Body compartment Model C0 (ASE) Css (ASE) k (ASE) I (ASE) R2

Seawater
Body wall C 12 665 (691) 0.46 (0.13) 11.7 (0.67) 0.92
Central digestive system E 98.8 (27.7) 0.093 (0.009) 0.77
Gonads C 1 417 (231) 0.21 (0.11) 23 (2.8) 0.90
Rectal caeca E 4.5 (2.0) 0.11 (0.01) 0.91
Pyloric caeca C 819 (398) 0.18 (0.17) 22.9 (8.2) 0.80
Podia C 6 584 (449) 0.33 (0.12) 12.4 (0.87) 0.93

Sediments
Body wall C 3 537 (206) 0.33 (0.08) 12 (0.92) 0.93
Central digestive system C 992 (81) 4.1 (29) 16 (2.0) 0.81
Gonads E 74 (19) 0.085 (0.008) 0.89
Rectal caeca C 31 (2.3) 0.22 (0.05) 20 (1.1) 0.94
Pyloric caeca C 588 (18) 3.0 (11) 16 (1.5) 0.97
Podia S 7 618 (4266) 0.034 (0.029) 0.57

Table 3. Asterias rubens. Concentration factors, CF (maximum, minimum and
mean) in body compartments after 34 d exposure via seawater. CFs calculated
as ratio between PCB#153 concentration in body compartments (ng g–1 total
lipids) and its concentration in seawater (ng g-1). C.ds: central digestive system

CF Body wall C.ds Gonads Rectal Pyloric Podia
caeca caeca

Max. 3.91 × 105 9.16 × 104 6.01 × 104 7.90 × 103 4.75 × 104 2.43 × 105

Min. 3.52 × 105 5.44 × 104 2.96 × 104 4.58 × 103 1.05 × 104 1.72 × 105

Mean 3.74 × 105 7.50 × 104 4.62 × 104 6.76 × 103 2.31 × 104 2.17 × 105
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Fischer 1989; Table 6). However, these comparisons
should be made with caution, since the field values
reported by Everaarts & Fischer we derived from sea
stars collected during the spawning period. Indeed,
it has been shown that the whole-body content of
extractable lipids is strongly dependent on the sexual
state of individuals, and may fluctuate by a factor of 2
to 3, particularly during the spawning period. This may
result in a similar range of variations in PCB concen-
trations within a few weeks (Knickmeyer et al. 1992,
Everaarts et al. 1998; Table 6).

Whether seawater or sediments were considered as
a contamination source, a steady state was reached or
tended to be reached in most body compartments dur-
ing the course of the experiments. This suggests either
that target sites are rapidly saturated, or that a meta-
bolization mechanism is induced strongly rapidly
following PCB exposure. Although a Mixed-Function
Oxidases-like system has been described in pyloric
caeca of Asterias rubens by den Besten et al. (1990,
1993, and den Besten 1998), it is well documented that
PCB#153 is quite resistant to biological degradation
(Sipes & Schnellmann 1987, Letcher et al. 2000) due to
its specific structure, i.e. lack of hydrogen atoms on the
biphenyl molecule (Borlakoglu & Wilkins 1993). There-
fore, the hypothesis regarding target-site saturation is
considered to be the most plausible explanation.

It is also noteworthy that when a steady state in
uptake was observed, equilibrium concentrations
of PCB#153 were generally reached quite rapidly
(around Day 20), indicating that the sea star could be

used as a bioindicator to pinpoint a PCB contamination
event soon after its occurrence.

Concentrations of incorporated 14C-PCB#153 at
steady state were much higher (up to 300 times) in the
body wall and podia than in any other compartment.
Being easily dissected and constituting 70 to 80% of
the total body weight, the body wall is of particular
interest with respect to field surveys, and should be
recommended as a body compartment to monitor com-
plementarily to pyloric caeca—the only body compart-
ment used in previous studies (e.g. den Besten et al.
1993, 2001, Everaarts et al. 1998).

Concentrations incorporated into the rectal caeca
were always low, between 1 and 2 orders of magnitude
lower than in all the other compartments. This is some-
what surprising, but could be related to the functions
of the rectal caeca, which are well known to play an
essential role in sea star digestion and excretion pro-
cesses (Jangoux 1982, Warnau & Jangoux 1999).

Our results have shown that PCB uptake is far more
efficient in sea stars exposed to spiked seawater than
in those exposed to labelled sediments when related to
exposure concentrations. For a given body compart-
ment, calculated concentration factors (CFs) based on
seawater were between 2 and 3 orders of magnitude
higher than transfer factors (TFs) from sediments
(Tables 3 & 5). Therefore, over the long term, despite
the fact that sediments constitute the main reservoir of
PCBs in the marine environment and that seawater
PCB concentrations are comparatively extremely low,
seawater would be an important route for PCB bio-
accumulation in this sea star, as has been suggested
for certain benthic infauna (e.g. Fowler et al. 1978).
However, this does not imply that seawater would be
the predominant pathway for PCB uptake, since our
results show that final concentrations reached in the
different body compartiments following the 2 types of
exposure were generally of the same order of magni-
tude. In addition, direct trophic transfer was not
addressed here, and this could also contribute signifi-
cantly to PCB bioaccumulation in the sea star.

While this work constitutes the first report on PCB
bioaccumulation kinetics in a sea star, several previous
studies have used radiolabelled 14C-PCB to examine

bioaccumulation kinetics in other
aquatic organisms (e.g. Goerke &
Ernst 1977, Gooch & Hamdy 1982,
Schweitzer et al. 1997). However,
surprisingly, these studies mostly use
PCBs as Aroclor equivalents (see e.g.
Butcher et al. 1997). The main advan-
tage of the 14C approach to measure
PCB fluxes and transfers in aquatic
biota is obviously its high sensitivity
and rapidity of detection, compared to
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Table 4. Asterias rubens. PCB distribution (mean% ± SD,
n = 3) in the different body compartments of the sea star after

34 d of exposure via seawater or sediments

Body compartment 14C-PCB-153 distribution (%)
Seawater Sediment

Body wall 68.8 ± 1.4 20.7 ± 4.4
Central digestive system 13.9 ± 4.1 8.9 ± 2.3
Gonads 8.4 ± 2.5 12.7 ± 2.5
Rectal caeca 0.2 ± 0.1 0.3 ± 0.1
Pyloric caeca 1.8 ± 0.7 5.7 ± 1.4
Podia 6.8 ±1.9 39.9 ± 14.6

Table 5. Asterias rubens. Transfer factors, TF (maximum, minimum and mean)
in body compartments after 34 d exposure via sediments. TFs calculated as ratio
between PCB#153 concentration in body compartments (ng g–1 total lipids) and
its concentration in sediments (ng g–1 dry wt). C.ds: central digestive system

TF Body wall C.ds Gonads Rectal caeca Pyloric caeca Podia

Max. 417 109 150 3.43 70 863
Min. 286 81 111 2.91 55 258
Mean 343 94 137 3.10 61 479
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analytical techniques using gas chromatography. It
therefore constitutes an interesting tool, since current
research on the behaviour of PCBs in the environment
tends to focus on congener-specific information (Safe
1990, Metcalfe 1994, Letcher et al. 2000). Furthermore,
it allows working with low (realistic) PCB concentra-
tions and assessment of uptake in organs which are
often too small to be analyzed by classical chemical
methodologies.
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