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• Coral fish of New Caledonia are highly contaminated by various trace elements.
• The main trace elements (e.g. Ni, Cr, Co) are typical from mining activity.
• This contamination extends from the coast to the barrier reef.
• Thus, the whole lagoon may well be contaminated.
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Due to intensivemining activity, increasing urbanization and industrialization, vast amounts of contaminants are
discharged into the lagoon of New Caledonia, one of the largest continuous coral reef systems and a major
biodiversity hotspot. The levels of 11 trace element concentrations were examined in the muscles of predator
fish in the south-western lagoon (moray eels and congers). These species are sedentary, widespread, abundant,
and they are easily collected using a sea snake sampling technique. We found the highest mean and maximal
concentrations of different trace elements ever found in coral fish, notably regarding trace elements typical
from mining activity (e.g., mean values for Cr and Ni, respectively: 5.53 ± 6.99 μg g−1 [max, 35.7 μg g−1] and
2.84 ± 3.38 μg g−1 [max, 18.0 μg g−1]). Results show that important trace element contamination extends
throughout the lagoon to the barrier reef, following a concentration gradient from the oldest nickel factory
(Nouméa).

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The lagoons of New Caledonia, SW Pacific Ocean spread over a very
large area (24,000 km2). They are one of the largest sanctuaries for the
marine diversity of the planet; it is therefore of prime importance to
identify and assess potential threats to these biodiversity hotspots
(Myers et al., 2000).

Increasing world demand for strategic metals, nickel (Ni) and cobalt
(Co) for instance (Manheim, 1986; Parkinson, 2005), resulted in an
intense exploitation of ores, the construction of new factories and the
opening of new open sky mines in New Caledonia. Currently, Ni and
Co extraction necessitates processing extremely large amounts of
garnierites, laterites and saprolites, typical ores with low Ni and Co
content (e.g. 1.5% of Ni in somemines, http://www.sln.nc). This involves
33 549 096 111.
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total forest clearing of vast land surfaces, and thus entails strong erosion
because the climate regime of New Caledonia is characterized by an
alternation of dry and wet seasons, episodic cyclones, and torrential
hydrological regimes (Pesin et al., 1995). For instance, the mine and
nickel factory complex recently established in the Bay of Prony (Goro-
Nickel, Vale Inco, 22°19′S–166°55′E) spreads out over 500 km2; in
addition the factory will discharge 10million cubic meters per year of
effluents in the lagoon (Massabuau et al., 2006; http://www.vale.nc/
activites/i_usine). Another large nickel factory (SLN, Société Le Nickel)
situated in the Nouméa harbor is functioning since more than a century
and is provisioned by seven mining sites spread across New Caledonia
(http://www.sln.nc). The overall mining activities generate massive
sediment deposits (Bird et al., 1984; Ambatsian et al., 1997; Ouillon
et al., 2010; Garcin et al., 2013) and a marked metal contamination of
the coastal seawaters (Hédouin et al., 2009) that may threaten coral
reefs (Walker and Ormond, 1982; Rogers, 1990).

However, possible environmental impact of mine industry on coral
reefs remains unclear. Indeed, Nouméa (themain city) and surroundings
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Fig. 1. Map of the study area. In each study site sampling year and sample size (N) are
indicated. The two stars show two nickel factories (SLN near Nouméa and Goro Nickel at
the southern tip of the main land). Black areas indicate emergent land (mainland and
islands); gray areas represent coral reef flats. The barrier reef and other fringing reefs
are represented by light gray areas. Kuendu and Porc Epic are close to themainland (Costal
Sites), Amédée is near the barrier reef (Barrier Reef Site), and the others (e.g. Signal) are in
an intermediate situation (Mid-Lagoon Sites).

Table 1
List of the anguilliform fish sampled (second column) for their trace element content.
Several fish were not accurately identified (e.g., head + half of the body missing).
Predator refers to the sea krait fromwhich the fish were obtained: LS stands for Laticauda
saintgironsi; LL stands for Laticauda laticaudata.

Year Fish species Predator species

LS LL

2005 Conger spp. 3 6
2011 Conger spp. 2 15
2005 Gymnothorax albimarginatus 0 9
2011 G. chilospilus 11 1
2005 G. fimbriatus 8 0
2005 G. margaritoforus 10 0
2005 Myrophis microchir 0 10
2005 Unidentified 2 2
2011 Unidentified 0 1

Total 36 44
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are fast developing urbanized and industrialized areas where approx-
imately 250,000 people exert strong environmental pressure (Cantin
et al., 2007; Lewis et al., 2009). Large amounts of polluted waters are
directly discharged into the sea. The capacities of the existing water-
treatment plants are critically insufficient (b50% of the requirements,
A2EP, 2009). The respective impacts of related mining activities
compared to other anthropogenic activities on the reef ecosystems
have not been quantified. Although biomonitoring surveys have been
carried out to examine some of these issues (Metian et al., 2008, 2013;
Chouvelon et al., 2009; Hédouin et al., 2009), the impact of urban and
industrial pollution on the reef ecosystems in the lagoon of New
Caledonia is still a major issue. No information is available regarding
large scale contaminations (either regarding trace element or persistent
organic pollutants, POPs) or large scale environmental impact caused by
pollution (Lewis et al., 2012; Rhind, 2009).

The respective signatures associated with metallic contaminants
stemming from urban activities versus Ni exploitation industries are
different (Mihaylov et al., 2000; Hédouin et al., 2008; Metian et al.,
2008; Hao et al., 2013). Theoretically, this difference provides means
to distinguish the sources of contamination. In practice contamination
processes are often complex and unclear when examined across large
spatial scales and different taxa are generally used to monitor
geographical variations of bioavailable metal concentrations in their
environment (Rainbow, 1995; Bustamante et al., 2003). Using widely
distributed organisms accessible all year round may provide
comparative data across the entire lagoon and would permit to take
into account seasonal fluctuations (Burger, 2006). Importantly, the
selected organisms must be sedentary to ensure that information is
spatially precise. Further, using predators enable to integrate underlying
trophic levels. Finally, a low-cost, efficient and fast sampling (thus
simple) technique is desired.

In New Caledonia, anguilliform fish fulfill these criteria. These
predators are widespread and abundant in the whole lagoon (Ineich
et al., 2007; Brischoux and Bonnet 2008). Following a pelagic larval
stage, they settle on the seafloor and become sedentary (Abrams et al.,
1983). More generally, fish are considered as efficient bio-indicators to
assess contamination in marine ecosystems (Gopal et al., 1997; van
der Oost et al., 2003; Ashraf et al., 2012). Recent researches showed
that using specialized top-predators (sea kraits, Laticauda spp.), and
large numbers of anguilliform fish can be easily collected all year
round in the coral reefs of the western Pacific Ocean (Reed et al., 2002;
Brischoux et al., 2007, 2009a, 2009b; Bonnet, 2012). Two species of
amphibious sea kraits (Laticauda laticaudata and Laticauda saintgironsi)
are very abundant and widespread in New Caledonia (Bonnet, 2012).
Tens of thousands of snakes prospect the seafloor around their home
islet and come back on land to digest where they can be easily captured.
They swallow their prey whole; a gentle forced regurgitation enabled to
collect the fish without consequence for the snakes (Fauvel et al., 2012).
They are philopatric and sedentary (Brischoux et al., 2009c). Using the
network of sea krait colonies spread across the entire lagoon, including
coastal sites and remote islets, most of the reef ecosystems can be
monitored with a high spatial resolution (Bonnet, 2012).

Although many contamination studies have been conducted in fish,
concentration levels of some important trace elements such as Co, Cr,
Mn, Ni, Se, and V have rarely been investigated (Eisler, 2010; Metian
et al., 2013). These later elements were analyzed in the present study
to generate baseline data on sedentary tropical fish. The first mandatory
issue to gauge the possible usefulness of anguilliform fish to probe
contamination status of the lagoon is to examine to what extent
anguilliform fish actually accumulate trace elements: very low
concentrations or a lack of variation (e.g. among individuals, sites…)
would make these organisms useless for ecotoxicology investigations.
Consequently, the following questions were examined in the present
study: (i) Do anguilliform fish accumulate trace element contaminants?
(ii) Do contamination levels vary spatially? And, (iii) do contaminant
levels correlate differentially with respect to mining or urban sources?
2. Materials and methods

2.1. Study sites

Study sites were situated in the Southwest lagoon, encompassing an
important ~25 km spatial gradient between the coast and the barrier
reef (Fig. 1). Anguilliform fish were sampled during two main periods:
summers 2005 and 2011. We aimed to assess presumably heavily
contaminated sites (e.g. Kuendu beach, nearby a nickel factory and the
main urban and industrialized area, Fig. 1) and presumably less/not
impacted sites (e.g. Amédée Island, nearby the barrier reef and thus
largely influenced by the open ocean, Fig. 1). From 2005 to 2011, in
the course of a long-term study, several sites where added (Bonnet,
2012). For analyses three main site categories were considered along
the coast–barrier reef gradient (Fig. 1): a) near the mainland (2 coastal
sites, CS), b) intermediate situation between the coast and the barrier
reef (3 mid-lagoon sites, MS), and c) remote site near the barrier reef
(1 barrier reef site, BS).



Table 2
List of the trace elements assayed in the anguilliform fish (first column), all fish species
pooled. Sample size (N), mean values (expressed in μg g−1), standard deviation (SD),
coefficient of variation (CV, expressed in %) and range (min-max) are provided.

Element N Mean± SD CV Min Max

Ag 80 0.052±0.154 296 0.005 1.35
As 80 10.5± 18.2 173 0.1 118
Cd 80 0.285±0.266 83 0.010 1.39
Co 80 0.15±0.09 60 0.34 0.68
Cr 80 5.53±6.99 126 0.11 35.7
Cu 80 5.2± 3.8 73 0.9 19.2
Fe 80 63±47 75 11 235
Hg 30 0.065±0.034 52 0.015 0.152
Mn 80 4.3± 3.1 72 0.5 19.9
Ni 80 2.84±3.38 119 0.39 18.0
Pb 80 0.438±0.636 145 0.010 4.88
Se 30 1.78±0.94 53 0.67 4.65
V 30 0.43±0.12 28 0.29 0.83
Zn 80 77±34 44 22 158

Anguilliformfish reveal large scale contamination bymine trace elements in the coral reefs
of New Caledonia.
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2.2. Fish samples

Anguilliform fish were obtained from sea snakes, L. laticaudata and
L. saintgironsi, via gentle forced regurgitation (see Brischoux et al.,
2007 for details). Each prey item was identified to the nearest
taxonomic levels (Böhlke et al., 1999; Smith, 1999a,b; Smith and
McCosker, 1999, see Brischoux et al., 2007). In the current study a
random sub-sample of 80 fish was taken among more than 1500 prey
and thus represented the main prey species consumed by the two
species of sea kraits (see Brischoux et al., 2007, 2009a). The head was
lacking in roughly 50% of the samples, sometimes half of the body was
also lacking, consequently five identifications at the species level were
problematical (Brischoux et al., 2007; Table 1). Table 1 provides a list
of the prey examined. Trace elements were analyzed in 80 fish
belonging to seven species, among which 50 were collected in 2005
and 30 in 2011 (Table 1). The respective foraging ecology of the two
sea krait species provides complementary information and a mean to
assess different seafloors (e.g. soft bottoms versus hard reefs;
Brischoux et al., 2007).

2.3. Tissues examined

The fish were not immediately dissected, they were stored in the
field at −25 °C and they were later lyophilised in the laboratory. For
analyses, 200 to 400mg of dorsal tissues was removed from the dried
specimens; therefore, the tissues represented in the sampling were
essentially muscles (e.g. very small bones were possibly included).
Digestion is highly polarized in sea kraits, important parts of the prey
are usually not degraded by digestive fluids (i.e. still covered with
skin) whereas one third of the prey are totally intact (Brischoux et al.,
2007). We systematically used well preserved parts of the fish. Liver
and kidneyswhere trace element concentrations are usually the highest
were not sampled because lyophilisation precluded isolating easily
these small organs. Importantly, using muscles provided a mean for
comparison with a recent study that also analyzed trace element
contamination in the muscles of 22 reef fish species (Metian et al.,
2013).

2.4. Contaminant assays

The total Hg concentrations in the powder obtained from the tissues
were determined by analyzing Hg directly with an Advanced Mercury
Analyzer (ALTEC AMA 254) on aliquots ranging from 5 to 50mg of dry
sample weighed to the nearest 0.01mg (Bustamante et al., 2006). The
analysis of Ag, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Se, V and Zn required
an extra step in the preparation protocol. From 150 to 300mg of each
samplewasmicrowave digested in amixture of 3ml of suprapure nitric
acid (VWR/Merck) and 1ml of suprapure chloridric acid (VWR/Merck),
and then diluted to 25 ml with deionized water. These 13 elements
were then analyzed by Inductively Coupled Plasma Atomic Emission
Spectrometry (Varian Vista-Pro ICP-OES) and Mass Spectrometry
(ICP-MS II Series Thermo Fisher Scientific). To avoid trace element
contamination, all glass and plastic utensils used were washed with
detergent, soaked in a bath of mixed nitric (35ml l−1) and chlorhydric
(50 ml l−1) acids for a minimum of 24 h, rinsed 3 times in deionized
(Milli-Q quality) water and dried in an oven at 50 °C before use.

Accuracy and reproducibility of the preparation were tested by
preparing analytical blanks and replicates of lobster hepatopancreas
(TORT-2) and dog-fish liver (DOLT-3) reference standards (National
Research Council, Canada) along with each set of samples. Results for
the certified reference materials were in good agreement with the
certified values and recovery rates varied from 83% to 109%. The
detection limits (μg g−1 dry wt.) were 0.005 (Hg), 0.02 (Ag, Cd, Co, Cr,
Pb), 0.1 (Cu, Mn, Se), 0.2 (As), 0.3 (Ni), 0.33 (V), and 3.3 (Fe, Zn).
Trace element concentrations are expressed in μg g−1 of dry weight
(dw).
2.5. Data analyses

Possible interferes by ArC or ClO did not influence Cr and Ni analyses
using ICP-MS as shown by the accurate CRM references in all tests. As the
data were not normally distributed (Shapiro Wilk tests, P-valuesb0.05),
Log transformed data to meet normality prior analyses were used. For
comparisons across studies trace element concentrationswere presented
as non-transformed values in tables and figures. Two species of sea kraits
were used to sample fish, but they forage in different sea floors
(Brischoux et al., 2007); analyses failed to reveal a sea snake species effect
for two major trace elements associated with Ni industry however
(Ni and Co). Statistics were performed using Statistica 10.0 (Statsoft
1984–2011).

3. Results

3.1. Trace element concentrations in fish

All the trace elements assessed were detected in the fish, in variable
concentrations however (Table 2). For instance, Fe and Zn were the
most abundant elements whereas low mean concentrations of Ag and
Hgwere observed (Table 2). Very highmaximal values of trace elements
were found in several individuals (e.g. As, Cr, Cu, Mn, Ni; respectively,
118 μg g−1, 35.7 μg g−1, 19.2 μg g−1, 19.9 μg g−1 and 18.0 μg g−1 dw,
Table 2). Overall, consideringmean andmaximal values, concentrations
of most trace elements were relatively elevated (Table 2). In the
sampling, the coefficient of variation of trace element concentrations
ranged from 28% for V to 296% for Ag. Some elements varied slightly
(i.e. Hg, Se, V, and Zn) whereas Ag, As, Cr, Ni and Pb showed high CV.

For several trace elements no statistical difference was found among
the different fish species (Fig. 2). For example Ni or Co concentrations
were not significantly different between the fish species (ANOVA with
trace element concentrations as the dependent variable and fish species
as the factor, F6, 73 = 2.077, P = 0.066 and F6, 73 = 0.666, P = 0.677,
respectively); therefore, for these trace elements the fish species were
pooled for several analyses. For other trace elements (e.g. As: F6, 73 =
14.674, Pb0.001), significant differences were found among fish species
precluding pooling them for analyses (Fig. 2).

3.2. Associations between trace elements

Concentrations of trace element typically released by nickel
exploitation (e.g. Ni, Co, Cr, Mn) were correlated (Fig. 3). Similarly,
concentrations of trace elements usually found nearby urban areas
(e.g. Ag, Cu) were correlated (Fig. 3). More precisely, Cr and Ni
concentrations were highly correlated (r = 0.80, F1, 78 = 144.93,



Fig. 2. Comparisons between mean (±SD; black symbols and error bars) and maximal
values (gray circles) of several trace elements measured in the muscles of different species
of anguilliform fish. Fishwere grouped as follow: congers-eels (Conger),Moray-eels (Alb to
Marg), Snake-eels (Myro) and non identified (NI). Full names and sample size are provided
in Table 1. Although significant differences were detected between fish species for several
trace element (e.g. As, P b 0.001, see text) or not for others (e.g. Ni, Co, P b 0.05, see text),
important overlapping was observed in all cases (not all trace elements displayed). NS
stands for non significant.

879X. Bonnet et al. / Science of the Total Environment 470–471 (2014) 876–882
Pb0.001; Fig. 3). Ni concentrations also correlated with Co (r=0.63, F1,
78=50.22, P b 0.001), Fe (r=0.76, F1, 78=106.43, P b 0.001), and Mn
(r= 0.28, F1, 78 = 6.05, P= 0.016) but not with other trace elements
(all P N 0.15; Fig. 3). To identify the main contributors to the variation
in Ni concentrations, a backward stepwise regression analyses were
performed by including the other trace elements (only those where
N = 80 included). Three trace elements were retained in the final
model: Co, Cr and Fe (r2=0.82).

Among other trace elements, Ag, Cd, Cu, Pb and Zn are usually
recognized as contaminants that originate from urban sources (Martin
et al., 1988; Sañudo-Willhelmy and Flegal, 1992; Callender and Rice,
2000). Using backward stepwise regression with Cu as the dependent
variable, two trace elements were retained in the final model: Pb and
Zn (r2=0.66). Variations in Ag and Pb concentrations were explained
respectively by variations in Cd and Cu concentrations (r2 = 0.26 and
0.54 respectively); yet most of the variance remained unexplained for
“urban” trace elements.

3.3. Spatial and annual variations

Focusing on Co and Ni (two elements that did not show fish species
effect) and comparing the sites with sufficient sample size (NN10 fish)
along the coast–barrier reef gradient (Kuendu – Signal – Amédée,
Fig. 1), significant effects (ANOVA with Ni concentrations as the
dependent variable and site as the factor: F2, 63 = 6.92, P = 0.002)
were detected. Post-hoc tests revealed that the fish originating from
the site near the nickel factory (Kuendu) were the most contaminated
(P b 0.005), with no significant difference between the fish from the
two other sites (P = 0.281). Using Co concentrations, the fish from
Kuendu were the most contaminated (same design ANOVA, P=0.003,
post-hoc tests P b 0.01). Considering the strong correlations between
Ni and Co concentrations, this later result was expected. Further
analyses including years as an additional factor led to similar trends,
showing that the year of sampling had no effect in the fish examined.
Using the main site categories (CS, MS, BS), and hence increasing both
sample size and spatial coverage, provided similar results showing
significant differences along the gradient from the coast to the barrier
reef (F2, 77=5.90, P=0.004 for Ni; F2, 77=10.90, P b 0.001 for Co; all
post-hoc tests Pb0.001; Fig. 4).

For other trace elements (e.g. Cr, Fe), fish species effects precluded
robust spatial and time analyses (Table 1). However, disregarding this
caveat, crude investigations suggested significant costal/barrier reef
contamination gradient with the highest values near the factory (all
P b 0.001). For other trace elements that are not associated with Ni
industry (e.g. Ag, Cd, Fe, Pb, Zn) no clear spatial patterns were detected.
For example, the fish from Signal (a mid-lagoon site, MS) exhibited the
highest Fe concentrations. Nonetheless, the fish sampled in the most
remote site (barrier reef site, BS) systematically exhibited lower values.

4. Discussion

The main objective of this study was to assess large scale
contamination by trace elements in one of themainmarine biodiversity
hotspots of the planet – the lagoon of New Caledonia (Myers et al.,
2000) – subjected to possible contamination by one of theworld largest
Ni-industries (New Caledonia is ranked among the four major Ni
producers). Previous investigations suggested that contamination by
trace elements was limited to benthic animals belonging to low trophic
levels and living in the seafloors situated near themain Ni-factory.Most
studies were limited to coastal sites and focused on algae, bivalves and
ascidians (Monniot et al., 1994; Hédouin et al., 2007, 2008, 2009, 2011;
Metian et al., 2008). They revealed substantial local contamination by
trace elements associated with Ni exploitation (Ni, Cr, Co, and Mn). In
contrast, studies carried out on pelagic organisms (i.e. nautiluses and
marine mammals) did not reveal evidences of Ni contamination out of
the lagoon (Bustamante et al., 2000, 2003; Pernice et al., 2009). A recent
study performed on a sample of 62 individuals belonging to 22 neritic
fish species (including grazers and predators) reported low concen-
trations of the trace elements typical from mining activity and a lack
of significant difference between sites (Metian et al., 2013). Yet, this
study was essentially based on fish captured near the coast, only 5
specimens originated from a roughly defined area of the southern
lagoon, and the barrier reef area were not sampled (see Metian et al.,
2013 for details). The present study is thus complementary by focusing
on predatory fish and encompassing a wide spatial scale, from the coast
to the barrier reef.

Results on benthic predatory anguilliform fish suggest that Ni and Cr
contamination occurs in coral reef on large spatial scales in New
Caledonia. Concentrations of Co, Cr and Ni were particularly elevated in
comparison to the data reported in other reef fish, either considering
New Caledonia or fish from other reef ecosystems (Denton and
Burdon-Jones, 1986; Eisler, 2010; Metian et al., 2013). A comparison
with the values recently reported in 22 fish species in New Caledonia
lagoon and using similar assay methodology shows that anguilliform
fish exhibits higher concentrations of mine trace elements (Fig. 5).
Moreover, mean andmaximal concentrations of Cr, Mn and Ni observed
in the muscle–tissues of anguilliform fish largely exceeded those
specifically measured in the liver of other fish (Fig. 5 and Table 2 in



A B
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Fig. 3. Relationships between the concentrations of several trace elementsmeasured in 80 anguilliform fish. Graph-A displays significant correlation between two trace elements typically
released in the environment bynickel industry (Ni & Cr), the dashed gray lines indicate high level threshold according to the literature. Graph-B displays a lack of relationship between aNi
and Cu respectively associated with mining versus urban activities. The bottom graphs (C & D) display significant correlations between trace elements typically associated with urban
activity.
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Metian et al., 2013); suggesting a fortiori that moray eels and congers
were highly contaminated.

Several reasons might explain why anguilliform fish exhibited very
high concentrations of trace elements. Moray eels and congers are
sedentary predators that forage on the seafloor (as their reptilian
predators, Brischoux et al., 2009c). Trace elements might be more
concentrated in the sediment/coral matrix used by anguilliform fish
compared to the water column situated above where the 22 other fish
species were sampled. This also suggests that mine trace elements
were readily bioavailable for the anguilliform fish from the dissolved
phase and that they were retained efficiently in fish tissues as shown
experimentally for Co and Cr (Jeffree et al., 2006). In addition, trace
elements can be transferred and accumulated through the food chain
up to anguilliform fish. Isotopic analyses revealed that anguilliform
fish occupy a very elevated predatory rank in the complex trophic
chains of the seafloors of the lagoon (Brischoux et al., 2011). However,
with the exception of Hg, trace metals such as Cd, Co, Cr, Cs, Mn and
Zn do not biomagnify under normal conditions in predator fish feeding
on a piscivorous diet (Mathews et al., 2008). Finally, particular life
history and physiological traits (e.g. longevity) might be involved in
the resulting bioaccumulation, these issues remain undocumented
however.
Considering the sedentary and philopatric habits of the studied
organisms (anguilliform fish and sea kraits) the present results can be
confidently examined at a spatial scale that allows comparisons with
little (or lack of) overlap among the selected sites (Fig. 1). The present
results revealed that important contamination by mine trace elements
spreads through the lagoon, from the coast to the barrier reef following
a decreasing concentration gradient (Fig. 4). The fish sampled close to
Nouméa are exposed to industrial (notably SLN Ni factory) and urban
contaminations; they displayed highest concentrations for mine trace
elements (e.g. Ni) and for several urban trace elements (e.g. Ag;
Martin et al., 1988; Sañudo-Willhelmy and Flegal; 1992; Cossa et al.,
1993). These results are in agreement with previous works on algae,
bivalves and coral groupers collected in urban areas (Hédouin et al.,
2009; Metian et al., 2008, 2013). Therefore, anguilliform fish seem to
accurately reflect coastal industrial andurban contaminations.However,
the present results partly contrast with those ofMetian et al. (2013) that
did not find spatial differences in Co, Cr and Ni concentrations in the
tissues of the coral grouper Plectropomus leopardus fromdifferent coastal
sites of the southern New Caledonia lagoon. The anguilliform fish from
the most remote area approximately 20 km offshore near the barrier
reef (Amédée) and located in a pass, were the less contaminated by
trace elements associated with nickel industry. Investigations in deep



Fig. 4. Mean concentration (Log transformed) of two trace elements associated with
mining activity (Ni and Co) measured in fish collected in costal, mid-lagoon and barrier
reef sites (see Fig. 1 for geographical positions). Mean are expressed with their standard
error and sample size.
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pelagic species indicate that contamination drops sharply out of the
lagoon (Bustamante et al., 2000; Pernice et al., 2009; Bustamante et al.,
2003). The lagoon is characterized by shallow waters (15m on average
in the sampled area) whilst very deepwaters occur after the barrier reef
(depth N500 m ~3 km after the drop-off) allowing the dilution of
contaminated waters.

Unexpectedly, relatively high contamination levels for several urban
trace elements were also recorded in Signal and Amédée that are
respectively situated 15 km and 20 km offshore. These two islets have
been used during decades as rubbish tips and impacted by oil
contamination (e.g. large petrol tanks are still stored on Amédée); the
garbages produced by important tourist activity (hundreds of tourists
Fig. 5. Comparison of the maximal concentration of four trace elements associated with
mining activity (Cr, Mn, Ni and Co) measured in the muscles of anguilliform fish (black
bars) versus a pool of 22 neritic fish by Metian et al., 2013 (gray bars). To facilitate
comparison, the gray dots indicate mean values (not maximal) for anguillifom fish
(N = 80; muscles); and the gray horizontal lines indicate the maximal values recorded
in the liver of the pool of 22 neritic fish studied by Metian et al., 2013.
per day) are still directly burned in open fires. In both sites large rubbish
layers buried during the Second World War (and later) are regularly
excavated by high tides (pers. obs). Sea kraits take approximately one
third of their prey in the vicinity of their home islet (in a b1km radius,
Brischoux et al., 2007), local contamination remains possible. Alter-
natively, trace elements such as Fe or Zn that can be relatively abundant
in the absence of anthropogenic contamination might naturally
accumulate in anguilliform fish (Eisler, 2010). Further investigations
are needed to evaluate the influence of human activity versus natural
processes on the concentrations of these different trace elements.

The great contamination variability observed for several trace
elements was expected; analyses were based on samples collected
over a large spatial gradient (and with six years interval between the
two sampling periods). Further, different fish species were pooled to
perform several analyses. Finer assessment is thus necessary to take
into account the respective ecology and biology of each fish species.
Thus, several ecological and methodological issues should be addressed
(e.g. regarding the foraging ecology of anguilliform fish) to better
interpret the concentration levels and variations observed. However, no
species effect was detected for major mine trace elements whereas
elevated values were observed in all fish species. Moreover, the fish
containing the highest quantity of Ni also exhibited the highest
concentrations of Co, Cr, andMn and theywere found in the area situated
near one of the main nickel factory. Thus major conclusions were robust
and anguilliform fish might be appropriate candidates to monitor
contamination by trace elements associated with Ni exploitation.

Although the respective contribution of multiple sources on
contamination in benthic predators such as anguilliform fish cannot
be tease apart, the present results show that contamination by trace
elements is a large scale problem largely underestimated in a major
biodiversity hotspot. Several axes for future researches can be proposed.
Trace element levels should be measured across trophic chains, from
sediments to sea kraits. Using the network of sea krait populations
(Bonnet, 2012), a large spatial scale investigation would permit such
assessment and to extent analyses to POPs and ultimately to examine
consequences on populations (Cavanagh et al., 1999; Bishop and
Rouse, 2006; Burger et al., 2007; Rezaie-Atagholipour et al., 2012). Yet,
New Caledonian waters are naturally enriched in different trace
elements, and many organisms may be well adapted to high trace
element concentrations. Alternatively, fast developing urbanization
and mining activities may cause deleterious pollution.
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