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skin and muscle Hg concentrations were positively and 
linearly correlated to individual size with no concomitant 
δ15N changes, which can be interpreted as a progressive Hg 
accumulation in tissues of individuals throughout life with 
no parallel dietary shift. Skin and muscle Hg concentra-
tions were linearly and positively related; hence, Hg skin 
could be used as a proxy of Hg concentration in muscle (a 
main Hg reservoir of the body). Kerguelen southern long-
finned pilot whales were less Hg contaminated than most 
pilot whale populations studied so far, thus suggesting that 
they are not at a high risk to Hg-induced damages in the 
remote islands of the Southern Ocean.

Introduction

Understanding the role of cetaceans in the structure and 
functioning of ecosystems is directly linked to a better 
knowledge of their foraging ecology that is often difficult 
to assess in the marine environment (Bowen 1997). Unlike 
breeding pinnipeds that can be handled ashore, cetaceans 
remain at sea all life long and, hence, investigating the 
food and feeding ecology of free-ranging odontocetes and 
mysticetes is especially challenging. Alternatively, mass-
stranding events offer a unique opportunity to collect large 
sets of biologically relevant data from dead specimens. 
Pilot whales (Genus Globicephala) are one of the most 
frequently reported cetaceans in mass strandings (Olson 
2009). Two species of pilot whales are recognized: the 
short- and long-finned pilot whales (G. macrorhynchus and 
G. melas, respectively), with the latter species including 
two spatially segregated subspecies, namely G. m. melas 
in the North Atlantic and G. m. edwardii in the South-
ern Ocean (Olson 2009; Oremus et al. 2009). The over-
all biology of the northern subspecies is well known, e.g. 
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mortality rate, life span (longevity up to 59 and 46 years 
in females and males, respectively) and adult length (up 
to 5.1 and 6.3 m in females and males) (Donovan et al. 
1993). By contrast, the biology, including the food and 
feeding habits of the southern subspecies, is poorly docu-
mented. Dietary investigations on the southern long-finned 
pilot whale focused primarily on stomach content analysis 
of a few stranded individuals from Tasmania (Gales et al. 
1992), New Zealand (Beatson et al. 2007a, b; Beatson and 
O’Shea 2009), Tierra del Fuego (Goodall and Galeazzi 
1985; Clarke and Goodall 1994; Mansilla et al. 2012) and 
Brazil (dos Santos and Haimovici 2001), with no available 
information from the southern Indian Ocean. Cephalopods 
form the bulk of the food, but stomach content examination 
of stranded individuals suffers several drawbacks includ-
ing overestimation of prey with hardly digestible elements 
that accumulate over time (e.g. cephalopod beaks), a bias 
towards the presence of near shore prey species, and the 
unknown health status of the animals (Santos et al. 2001).

Indirect trophic methods have been developed over the 
last 25 years to complement more conventional means. 
These methods use ‘ecological tracers’, such as stable iso-
topes, lipids and contaminants, and are all based on the 
common principle ‘you are what you eat’, i.e. the biochem-
ical composition of molecules and tissues of consumers 
reflects that of their food in a predictable manner (Ramos 
and Gonzalez-Solis 2012). Stable isotope ratios of car-
bon (δ13C) and nitrogen (δ15N) are increasingly popular to 
investigate the ecology of terrestrial and marine organisms. 
δ13C values vary little along the food chain and are mainly 
used to determine primary sources in a trophic network 
(Kelly 2000; McCutchan et al. 2003). In the marine envi-
ronment, δ13C values indicate consumer foraging areas (i.e. 
inshore versus offshore and pelagic versus benthic) or lati-
tudinal variation in the contribution to food intake (Hobson 
et al. 1994, Cherel et al. 2000a; Pajuelo et al. 2012). In con-
trast, consumer tissues are enriched in 15N relative to their 
food and δ15N values are used as indicators of consumers’ 
trophic positions (McCutchan et al. 2003; Vanderklift and 
Ponsard 2003). A main interest of the isotopic method is 
that δ13C and δ15N values provide dietary information over 
different temporal scales depending on tissue-specific iso-
topic turnover rates that range from a few days for plasma 
to several years for bone collagen (Dalerum and Angerb-
jörn 2005; Newsome et al. 2010).

Mercury (Hg) concentration can also be used as a bio-
marker of dietary preferences and trophic positions of 
consumers because the main source of Hg contamination 
is food and Hg biomagnifies along food webs, meaning 
that Hg level increases with increasing trophic position of 
consumers within a given ecosystem (Gray 2002; Ramos 
and Gonzalez-Solis 2012). Hg derives from both natural 
and anthropogenic sources. Owing to its high volatility and 

long atmospheric residence time, Hg reaches remote areas 
through long-range atmospheric transport, thus contami-
nating oceanic islands and Polar Regions (Fitzgerald et al. 
1998). Hg levels vary with the marine environments, being 
enhanced in coastal waters relative to the surface ocean, 
higher at depths relative to oceanic surface waters and 
depending on oceanic water masses (Fitzgerald et al. 2007; 
Cossa et al. 2011). In addition, Hg is a persistent, toxic and 
highly mobile metal in the marine environment. In mam-
mals, Hg toxicity is primarily manifested as central nervous 
system damage including sensory and motor deficits and 
behavioural impairments. Reliable toxicity data for marine 
mammals are scarce, but the slow rate of contaminant 
elimination and high contaminant levels of cetaceans make 
them good sentinel species for the monitoring of ecosystem 
health (Das et al. 2003).

Using a combination of visual observations from fishing 
vessels together with stable isotopes and Hg from tissues 
of stranded animals as ecological tracers, the main aim of 
this exploratory study was to investigate the food and feed-
ing ecology of southern long-finned pilot whales in a remote 
archipelago (Kerguelen), where almost nothing is known 
about the species. Only a few records of pilot whales have 
been documented in the southern Indian Ocean, including 
Kerguelen waters (Robineau 1989; Robineau and Duhamel 
2006). The isotopic method was validated in the area, with 
δ13C values of predators indicating their foraging habitats 
(Cherel and Hobson 2007; Jaeger et al. 2010) and their δ15N 
values increasing with trophic level (Cherel et al. 2010). In 
brief, δ13C values decrease from inshore to offshore consum-
ers and they decrease with increasing oceanic latitudinal for-
aging habitats of the predators, while δ15N values increase 
in the order crustacean-eaters < small fish consumers < large 
fish and squid consumers. The pilot whale isotopic niche was 
determined using two tissues that record trophic informa-
tion at different time scales, with skin and muscle integrating 
periods of weeks and months, respectively (Browning et al. 
2014, Newsome et al. 2010). Previous and ongoing investi-
gations on Hg exposure showed a large range of Hg concen-
trations within marine organisms living in Kerguelen waters 
that indicates Hg biomagnification in the corresponding oce-
anic ecosystem (Bustamante et al. 2003a; Bocher et al. 2003; 
Blévin et al. 2013; Carravieri et al. 2013, 2014). Ontogeny, 
age and sex modulates the foraging ecology, and thus the 
isotopic signature of cetaceans (Das et al. 2004; Nino-Torres 
et al. 2006; Newsome et al. 2009), and feeding habits, age, 
size and sex affect their Hg levels (Das et al. 2003; Lahaye 
et al. 2006). Hence, influences of individual traits (sex and 
size) on foraging habitat (δ13C) and trophic position (δ15N) 
as well as influences of both individual traits and foraging 
ecology on Hg concentrations were examined on a fairly 
large numbers of southern long-finned pilot whales that 
stranded in 2006 and 2010 at Kerguelen Islands.
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Materials and methods

At-sea observations

Sightings of cetaceans were recorded by fishery observers 
working onboard seven French longliners that fished within 
the Exclusive Economic Zone off Kerguelen Islands. The 
fishery targets the Patagonian toothfish (Dissostichus elegi-
noides) in slope waters (500–2,500 m depths) surround-
ing the archipelago. Observers recorded the occurrence, 
number and location (longitude and latitude) of any ceta-
cean found in the area. Then, the geo-referenced data were 
included into the Pecheker data base (Martin and Pruvost 
2007). All the pilot whale records during the period 2003–
2012 were extracted from the data base and the software 
R.2.15.3 (‘base’, ‘RcolorBrewer’ and ‘fields’; R Develop-
ment Core Team 2013) was used to build a repartition map 
of the species in Kerguelen waters (Fig. 1). Bathymetric 
data around the Kerguelen Plateau were extracted from the 
General Bathymetric Chart of the Oceans (GEBCO) at the 
British Oceanographic Data Centre (BODC) website.

Study sites, stranding events and tissue sampling

Fieldwork was carried out at Kerguelen Islands (southern 
Indian Ocean), which is located in the southern part of the 
Polar Frontal Zone, in the immediate vicinity of the Polar 
Front (Park and Gambéroni 1997). Two mass strandings 

of 91 and 135 southern long-finned pilot whales occurred 
on remote beaches of the Courbet Peninsula (49°21′S, 
70°18′E) in October 2006 and January 2010, respectively. 
The precise dates of the two events are unknown. Notice-
ably, most internal organs from the carcasses were already 
scavenged by seabirds, thus precluding the collection of 
stomach contents, and hence, direct dietary analysis. All 
the specimens but four (n = 222) were measured (total 
length, TL). Small individuals with TL ≤3.0 m were con-
sidered as suckling calves as the average (maximum) TL 
at the onset of weaning are 2.2 (3.2) and 2.2 (3.5) m for 
females and males, respectively (Desportes and Mouritsen 
1993). Tissue sampling was performed on 193 specimens 
(n = 91 and 102 in 2006 and 2010, respectively). Both skin 
and muscle samples were collected from most pilot whales 
(n = 137), but some specimens were sampled for skin or 
muscle alone (n = 29 and 27, respectively). Tissue samples 
were either stored in 70 % ethanol (2006) or kept frozen at 
−20 °C (2010) until laboratory analyses in France.

Stable isotopes, mercury and molecular sexing

Any remain of subcutaneous white adipose tissue was 
removed from skin samples with a scalpel. The 2006 skin 
and muscle samples were first oven dried at 50 °C for 
48 h for ethanol evaporation. Then, samples from both 
years were freeze-dried during 48 h and then grinded in 
a mortar. Since lipids are depleted in 13C relative to other 

Fig. 1  Location of Kerguelen 
Islands within the Indian Ocean 
(inset) and spatial at-sea obser-
vations of long-finned pilot 
whales from longliners targeting 
Patagonian toothfish in Ker-
guelen waters during the period 
2003–2012. Colour scale on the 
right indicates bathymetry (m)
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tissue components (DeNiro and Epstein 1977), they were 
extracted from skin and muscle samples using cyclohex-
ane following Chouvelon et al. (2011). Powdered subsam-
ples were weighed (0.3–0.4 mg) with a microbalance and 
packed into tin containers. Relative abundance of carbon 
(13C/12C) and nitrogen (15N/14N) were determined with a 
continuous flow mass spectrometer (Micromass Isoprime) 
coupled to an elemental analyser (Euro Vector EA 3024). 
Results are presented in the usual δ notation (in ‰) relative 
to Vienna PeeDee Belemnite and atmospheric N2 for δ13C 
and δ15N, respectively. Replicate measurements of internal 
laboratory standards (acetanilide) indicated measurement 
errors <0.15 ‰ for both δ13C and δ15N values.

Between 5 and 15 mg of freeze-dried and powdered 
samples were analysed in an advanced Hg analyser spec-
trophotometer (Altec AMA 254) following Bustamante 
et al. (2006). Hg determination involved evaporation of Hg 
by progressive heating until 800 °C under oxygen atmos-
phere for 2 min 30 s and subsequent amalgamation on a 
gold trap. The net was heated to liberate the collected Hg 
that was measured by UV atomic absorption spectrophotom-
etry. Samples were analysed for total Hg. All analyses were 
repeated 2–3 times until having a relative standard devia-
tion <10 %. Accuracy was checked using certified reference 
material [Tort-2 Lobster Hepatopancreas, NRC, Canada; 
mean 0.27 ± 0.06 µg g−1 dry weight (dw)]. Our measured 
values were 0.29 ± 0.02 µg g−1 dw (n = 56). Blanks were 
analysed at the beginning of each set of samples and the 
detection limit of the method was 0.005 µg g−1 dw.

Sampled individuals were sexed genetically using poly-
merase chain reaction (PCR) of introns within the Zfx and 

Zfy genes (Shaw et al. 2003). DNA was extracted and 
purified from a 25 mg aliquot of skin with the extraction 
kit ‘NucleoSpin®Tissue’. PCR was performed on purified 
DNA ranging from 0.1 to 136 ng in a 20 µl reaction vol-
ume containing 12.5 µl of pure water, 2 µl of 1*Taq pol-
ymerase reaction buffer, 1.5 µM MgCl2, 150 µM dNTPs, 
1.5 U of Taq polymerase (Invitrogen) and either 0.3 µM of 
primers ZFX0582 forward, ZFX0928 reverse (for Zfx/Zfy 
amplification) and SRY reverse or 0.06 µM of primer SRY 
forward (for SRY amplification, Rosel 2003). PCRs were 
performed as follows: 1 cycle for 30 s at 92 °C, then 35 
cycles of denaturation for 30 s at 94 °C, annealing for 45 s 
at 51 °C and amplification for 45 s at 72 °C. Then, each 
sample was loaded on a 3 % agarose gel and the fragments 
were separated by electrophoresis. Zfx-/Zfy-specific prim-
ers (Online Resource 1) allowed differentiating males 
(2 bands, 339 basepairs (bp) for the X-specific band and 
382 bp for the Y-specific fragment) from females (1 band).

Methodological issue and statistical analyses

Since the precise dates of the two stranding events were 
unknown, the effect of the ‘quality’ of the skin samples was 
visually assessed. Samples were considered either ‘bad’ 
if skin was altered and not easily differentiable from the 
subcutaneous connective tissue or ‘good’ if skin was eas-
ily differentiable. The influence of sample quality on skin 
δ13C, δ15N and Hg values within each stranding event was 
tested with Welch’s t tests using R.2.15.3 (‘stats’). In both 
2006 and 2010, skin samples of bad quality had signifi-
cantly higher δ13C and δ15N values and significantly lower 

Table 1  Tissue δ13C, δ15N and Hg values in southern long-finned pilot whales from Kerguelen Islands

Values are mean ± SD with ranges in parentheses. It was not possible to sex some individuals from the 2010 stranding event

Tissues Years Sexes δ13C δ15N Hg

n (‰) n (‰) n (µg g−1 dw)

Skin 2006 Both 58 −18.3 ± 0.3 (−19.2 to −17.3) 58 12.3 ± 0.4 (11.6–13.8) 58 4.6 ± 2.5 (0.5–8.8)

Females 37 −18.3 ± 0.3 (−19.2 to −17.3) 37 12.3 ± 0.5 (11.9–13.8) 37 5.1 ± 2.2 (0.5–8.1)

Males 21 −18.2 ± 0.3 (−18.8 to −17.8) 21 12.3 ± 0.4 (11.6–13.2) 21 3.7 ± 2.8 (0.5–8.8)

2010 Both 28 −18.9 ± 0.5 (−19.7 to −18.1) 28 12.2 ± 0.6 (11.5–14.1) 28 3.9 ± 2.2 (0.8–7.6)

Females 15 −18.9 ± 0.5 (−19.7 to −18.1) 15 12.2 ± 0.8 (11.5–14.1) 15 4.0 ± 1.9 (0.9–6.8)

Males 11 −18.7 ± 0.5 (−19.6 to −18.1) 11 12.3 ± 0.3 (11.7–13.1) 11 3.5 ± 2.7 (0.8–7.6)

Average Both 86 −18.5 ± 0.5 (−19.7 to −17.3) 86 12.3 ± 0.5 (11.5–14.1) 86 4.4 ± 2.4 (0.5–8.8)

Muscle 2006 Both 69 −19.0 ± 0.4 (−20.2 to −18.3) 69 11.3 ± 0.6 (10.6–14.5) 69 6.8 ± 2.4 (1.2–11.0)

Females 45 −19.0 ± 0.4 (−20.2 to −18.3) 45 11.3 ± 0.5 (10.9–14.1) 45 7.0 ± 2.2 (1.2–11.0)

Males 24 −19.0 ± 0.4 (−20.0 to −18.5) 24 11.3 ± 0.8 (10.6–14.5) 24 6.4 ± 2.7 (1.5–11.0)

2010 Both 95 −19.4 ± 0.4 (−20.2 to −17.3) 26 12.1 ± 1.0 (10.7–13.8) 26 2.3 ± 1.7 (0.2–7.0)

Females 43 −19.3 ± 0.3 (−20.1 to −18.7) 14 11.9 ± 0.9 (10.7–13.8) 14 2.6 ± 1.7 (0.4–7.0)

Males 34 −19.4 ± 0.5 (−20.2 to −17.3) 11 12.2 ± 1.1 (10.8–13.8) 11 2.1 ± 1.8 (0.2–6.0)

Average Both 164 −19.2 ± 0.4 (−20.2 to −17.3) 95 11.5 ± 0.8 (10.6–14.5) 95 5.6 ± 3.0 (0.2–11.0)
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Hg values than good quality samples (Online Resource 2). 
Muscle samples were then grouped according to the cor-
responding quality of skin samples and an identical quality 
effect was found for δ15N and Hg values but not for δ13C 
values in 2010 samples. In contrast, no significant differ-
ences between muscle samples of good and bad quality 
were found in 2006. Consequently, δ13C, δ15N and Hg val-
ues from good 2006 and 2010 skin samples, all 2006 mus-
cle δ13C, δ15N and Hg values, all 2010 muscle δ13C values, 
but only δ15N and Hg values from good 2010 muscle sam-
ples were used for statistical analyses (Table 1).

Welch’s t tests (two-sample unpooled t tests for unequal 
variances) were used to check if the two tissues (skin and 
muscle) differed or not in various parameters (δ13C, δ15N 
and Hg). The influence of size (TL), sex and year of strand-
ing on δ13C, δ15N and Hg values were investigated using 
generalized linear models (GLMs) using R.2.15.3 (‘stats’). 
In models where Hg concentrations were the response 
variable, δ13C (but not δ15N values, see ‘Results’) was also 
incorporated as an explanatory variable. Models were con-
structed by incorporating the different variables and biolog-
ically significant interactions. Correlations between explan-
atory variables were tested using Pearson’s correlation 
tests. The most parsimonious models were selected through 
forward selection according to the bias-adjusted Akaïke’s 
Information Criterion (AICc), which is a small sample size 
adjustment (Akaïke 1973; Burnham and Anderson 2002). 
As a general guideline, if AICc values differ by more than 
2, the model with the lowest AICc value is the most accu-
rate, whereas models with AICc values differing by less 
than 2 are fairly similar in their ability to describe the data, 
and the model including the least number of parameters 
(the simplest) is the most accurate (Lebreton et al. 1992). 
Residuals of selected models were checked for normal-
ity using Shapiro–Wilk test and Q–Q plots. The explained 

variation is reported for each model (Table 2). The relation-
ship between Hg concentrations in skin and muscle was 
best described by a linear model. Values are mean ± SD.

Results

At-sea observations

A total of 131 at-sea observations of southern long-finned 
pilot whales were recorded within the Kerguelen Exclusive 
Economic Zone during the period from 31 October 2003 
to 12 December 2012 (~9 years). The number of individu-
als per sighting averaged 53 individuals and ranged from 1 
to ~300 individuals. The resulting map (Fig. 1) highlights 
the presence of the species in slope waters surrounding the 
Kerguelen Archipelago. Seasonal differences between win-
ter and summer were found neither in pilot whale reparti-
tion nor in differences in the number of their at-sea obser-
vations (weighted by fishing effort that was quantified 
using the number of hooks).

Stranded individuals

TL of stranded southern long-finned pilot whales aver-
aged 4.2 ± 1.1 m with no significant differences between 
the 2 years (Welch’s t test, t = 0.22, p = 0.826). TL 
ranged from 1.6 to 6.9 m with a mode at 4–5 m (Fig. 2), 
which corresponds to the size range of the species (Bloch 
et al. 1993a, b). Skin and muscle δ13C, δ15N and Hg val-
ues during the 2 years are presented in Table 1. In 2006, 
δ13C and δ15N values were significantly lower in mus-
cle than in skin, while Hg concentration was higher in 
muscle (t = −12.32, −10.68 and 5.12, respectively, all 
p < 0.0001). In 2010, δ13C value was again lower in muscle 

Table 2  Generalized linear models (Gaussian distribution, identity link function) selected for each tissue (skin: δ13Cs, δ
15Ns, Hgs; muscle: 

δ13Cm, δ15Nm, Hgm) with their corresponding AIC

AICc Akaike’s Information Criteria adjusted for small sample sizes, Exp. Var. explained variation adjusted by sample size and number of param-
eters, TL total length

Response variable Selected GLM AICc Exp. Var. (%)

Isotopes

 Explanatory variables: size, year, sex

  δ13Cs δ13Cs ~ year 48.80 30

  δ13Cm δ13Cm ~ year 119.00 19

  δ15Ns δ15Ns ~ year + TL + sex 53.58 19

  δ15Nm δ15Nm ~ year + TL 155.91 28

Hg

 Explanatory variables: size, year, sex, δ13C

  Hgs Hgs ~ TL + sex 282.56 73

  Hgm Hgm ~ TL + sex + year + δ13Cm + TL: δ13Cm + sex: δ13Cm + year : δ13Cm + sex: size 327.36 81
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(t = −5.21, p < 0.0001), but δ15N values of the two tis-
sues were not statistically different and Hg concentration 
was higher in skin than in muscle (t = −2.93, p < 0.010). 
A statistical comparison of the 2 years showed that skin 
δ13C values, but not skin δ15N and Hg values, were differ-
ent (t = 5.16, p < 0.0001), and that muscle δ13C, δ15N and 
Hg values were all significantly different between 2006 and 
2010 (t = 5.96, −3.59 and 10.19, p < 0.0001, <0.01 and 
<0.0001, respectively).

Statistical analyses of the influence of individual traits 
(sex and TL) and year of stranding on isotopic values 
(Table 2) showed that the most parsimonious GLM selected 
by AICc values included the effect of year in explaining tis-
sue δ13C values, with δ13C values being significantly higher 
in 2006 than in 2010 (see above). Skin δ15N values were 
best explained by an effect of sex, TL and year, and muscle 
δ15N values by an effect of TL and year. Tissue δ15N values 
decreased with increasing TL in small individuals (≤3 m), 
but did not change with increasing TL in mature individ-
uals (>3 m, Fig. 3). Indeed, skin and muscle δ15N values 
were significantly higher in small pilot whales (≤3 m) than 
in larger individuals (Welch’s t tests, t = 3.28 and 3.61, 
p < 0.001 and <0.01, respectively).

Hg concentrations in skin and muscle were positively 
and linearly related, with linear models explaining 68 and 
50 % of Hg variability in 2006 and 2010, respectively 
(Fig. 4). Given the size-induced effect in tissue δ15N values 
(see above), the effect of δ15N values on tissue Hg concen-
trations was tested separately on mature individuals only. 
There was no correlation between Hg concentrations and 
δ15N values in skin (F1,60 = 0.146, R2

adj = 0, p = 0.704), 
whereas in muscle a negative relationship was highlighted 
(F1,75 = 19.33, p < 0.001), but the explained variance was 
very low (R2

adj = 0.19). The influence of individual traits 
(sex and TL), year of stranding and δ13C values on tissue 

Hg concentrations was tested through GLMs. For skin, the 
most parsimonious model selected by AICc values included 
the effect of TL and sex in explaining Hg values (Table 2). 

Fig. 2  Frequency distribution of total length of stranded long-finned 
pilot whales from Kerguelen Islands (pooled data from the two mass-
stranding events)

Fig. 3  Tissue δ15N values versus total length of calves (triangles), 
females (circles) and males (squares) long-finned pilot whales that 
stranded in 2006 (white) and 2010 (black). Dotted lines refer to the 
length at weaning (3 m) and outlier depicts an individual with both 
high δ13C and δ15N values suggesting that it migrated from warmer 
northern waters to the Kerguelen Islands

Fig. 4  Relationship between skin and muscle Hg concentrations of 
calves (triangles up), females (circles), males (squares) and unsexed 
(triangle down) long-finned pilot whales that stranded in 2006 
(white) and 2010 (black). Linear regressions: y = 0.69x + 0.80, 
r2 = 0.68, F1,37 = 78.36, p < 0.0001 and y = 0.89x + 1.62, r2 = 0.50, 
F1,24 = 23.90, p < 0.0001 in 2006 and 2010, respectively
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Females had significantly higher skin Hg concentrations 
than males (4.8 ± 2.1 vs. 3.6 ± 2.7 µg g−1 dw), with con-
centrations increasing with TL (Fig. 5). For muscle, the 
best fit to the Hg data was obtained for the maximal model, 
which included the effect of sex, TL, year, δ13C values and 
their interactions (Table 2). Muscle Hg concentration was 
significantly higher in females than in males (6.0 ± 2.8 
vs. 5.1 ± 3.1 µg g−1 dw) and higher in 2006 than in 2010 
(Table 1).

Discussion

Foraging ecology and at-sea distribution

Sightings from longliners emphasize the regular occurrence 
of southern long-finned pilot whales in slope waters around 
the Kerguelen Archipelago (Fig. 1). These at-sea observa-
tions were highly biased towards the Patagonian toothfish 
fishing grounds. However, the few previous sightings again 
points out the importance of slope waters for pilot whales 
in the area, with rare observations near the Kerguelen 
coastline (Robineau 1989; Robineau and Duhamel 2006). 
These observations are in agreement with long-finned pilot 
whales inhabiting deep oceanic waters and zones of higher 
productivity along the continental and island shelf breaks, 
apparently venturing sometimes into neritic waters (Abend 
and Smith 1999).

Muscle δ13C and δ15N values of long-finned pilot whales 
from Kerguelen Islands are similar to the isotopic data from 
Australian specimens (Davenport and Bax 2002). How-
ever, spatial variations in isotopic baselines preclude direct 

comparison of raw δ13C and δ15N values of pilot whales 
living in different water masses (Table 3). In contrast, iso-
topic comparisons together with the known food and feed-
ing ecology of air-breathing vertebrates from Kerguelen 
Islands helped delineating the whale foraging habitat (δ13C) 
and dietary habits (δ15N). In brief, many investigations 
were conducted over the last 20 years on various Kerguelen 
seabirds (e.g. penguins, albatrosses and petrels) and pinni-
peds (e.g. elephant seal and fur seals) and their prey using 
a variety of complementary methods (dietary analyses, 
bio-logging and stable isotopes) thus allowing defining rel-
evant control species from different habitats (benthic ver-
sus pelagic, coastal versus offshore) and with different diets 
(crustaceans, cephalopods and fish) (Online Resource 3).

The relatively high muscle δ13C values of Kerguelen 
pilot whales preclude feeding in Antarctic waters (Cherel 
2008). Instead, their muscle δ13C values are similar to 
those of the Patagonian toothfish that feed over the Ker-
guelen outer shelf and slope waters (Cherel et al. 2008, 
unpublished data). Alternatively, since inshore-offshore 
and latitudinal δ13C gradients overlap in the area (Cherel 
and Hobson 2007), the δ13C values may also suggest that 
pilot whales migrated from the subtropical to the subant-
arctic zone. However, the lack of associated high muscle 
δ15N values resulting from high δ15N baseline level in the 
subtropics (Altabet and François 1994; Lourey et al. 2003) 
does not support the migration hypothesis. Hence, the most 
parsimonious explanation of their muscle δ13C values is 
that southern long-finned pilot whales foraged primar-
ily over the Kerguelen shelf break and nearby subantarc-
tic oceanic waters in the months preceding their stranding, 
which is in agreement with at-sea observations of the spe-
cies (see above).

Muscle δ15N value of pilot whales was much higher 
than that of crustacean-eaters from Kerguelen Islands, 
namely the southern rockhopper penguin and Antarctic and 
thin-billed prions (Cherel et al. 2010, Online Resource 3). 
The whale δ15N value was 1  ‰ above that of the myct-
ophid fish consumers king penguin and Antarctic fur seal 
and 1  ‰ below the δ15N value of black-browed albatross, 
which has a catholic diet including large fish and squid 
(Cherel et al. 2000b, 2008, 2010). Accordingly, pilot whale 
muscle Hg concentration was two and one order of magni-
tude higher than those of planktivorous petrels and of the 
crustacean- and myctophid-eater blue petrel, respectively 
(Bocher et al. 2003). Furthermore, the pilot whale Hg con-
centration was two times higher than that of the white-
chinned petrel, which has a more diverse diet, including 
various fish and squid species (Delord et al. 2010; Cipro 
et al. 2014). Hence, both trophic markers (δ15N and Hg) 
indicate that pilot whales did not prey primarily upon 
crustaceans, but favoured a mixed diet of fish and squid 
in Kerguelen waters. While prey cannot be determined 

Fig. 5  Relationship between skin Hg concentrations and total length 
of long-finned pilot whales (individuals from the two stranding 
events were pooled according to sexes and including calves). Best 
GLM model (Gaussian distribution, identity link function, 73 % of 
explained variation): y (females, white circles) = 1.88x − 2.34, y 
(males, black squares) = 1.88x − 3.75
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at the species level using δ15N values, feeding on a large 
spectrum of fish and squid is in general agreement with 
stomach content analysis of long-finned pilot whales else-
where (Desportes and Mouritsen 1993; Pauly et al. 1998; 
Spitz et al. 2011). The trophic position of the long-finned 
pilot whale within the Kerguelen oceanic ecosystem can be 
estimated at 4.7, using the combination of the mean whale 
muscle δ15N value, an assumed trophic level of 2.0 for the 
herbivorous salp Salpa thompsoni with a 3.4 ‰ δ15N value 
(Cherel et al. 2008), and a 2.7 ‰ 15N enrichment factor 
between prey and cetacean muscle (Borrell et al. 2012). 
The trophic position compares well with those previously 
estimated for the northern subspecies using muscle isotopic 
measurements (4.9), standardized diet composition (4.4) 
and ecosystem modelling (4.7) (Pauly et al. 1998; Lassalle 
et al. 2014). In Kerguelen waters, the southern long-finned 
pilot whale is a top consumer close to other marine mam-
mals (e.g. southern elephant seal, 4.6) and large fish (e.g. 
Patagonian toothfish, 5.0), but the albatross trophic position 
is higher (5.3–5.7) and the oceanic ecosystem is dominated 
by the colossal squid (6.1; Cherel et al. 2008).

Tissue-related isotopic differences result from two non-
exclusive explanations, namely different biochemical com-
positions leading to tissue-specific isotopic discrimination 
factors, and tissue-specific isotopic turn-over rates inducing 
different trophic temporal integrations (Wolf et al. 2009). 
Little or no differences were found in the isotopic ratios of 
lipid-extracted skin and muscle of cetaceans and hence in 
their discrimination factors (Borrell et al. 2012; Horstmann-
Dehn et al. 2012). Consequently, the consistent ~0.7 ‰ 
δ13C difference between the two tissues of southern long-
finned pilot whales suggests a temporal shift associated 
with a spatial change in the main foraging habitat, since 
skin and muscle integrate periods of weeks and months, 
respectively (Newsome et al. 2010; Browning et al. 2014). 
However, isotopic variability of Kerguelen southern long-
finned pilot whales overall remained low (<1 ‰, Table 1) 
within and between tissues and when compared the two 
stranding events. Such a low degree of isotopic variability 
suggests no major changes in the whale feeding ecology 
in Kerguelen waters over the medium- and long-term (skin 
versus muscle, and 2006 versus 2010, respectively). Inter-
estingly, most small individuals presented higher skin and 
muscle δ15N values than larger pilot whales. An ontogenetic 
isotopic shift associated with nursing and weaning was pre-
viously described in pinnipeds and cetaceans, which can 
be explained by the consumption of milk by calves and 
the resulting higher trophic position (δ15N) of the young 
relative to its mother (Ducatez et al. 2008; Newsome et al. 
2009). In pilot whales, juveniles are weaned during a pro-
tracted period during which they progressively increase 
their consumption of natural prey (Desportes and Mour-
itsen 1993), thus inducing a concomitant δ15N decrease V
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down to adult values. Neither tissue δ13C nor δ15N values 
changed with size thereafter, suggesting no major foraging 
variations associated with growth and age after weaning in 
Kerguelen pilot whales (Fig. 3).

Hg exposure

Exposure to Hg was previously investigated in many spe-
cies of marine mammals, with liver exhibiting consistently 
the highest Hg concentrations, followed by kidney, muscle 
and skin (Thompson 1990; Das et al. 2003). Accordingly, 
long-finned pilot whales presented relatively low and almost 
similar Hg levels in muscle and skin samples (Frodello et al. 
2000, this study). Cetacean skin is a fragile and highly vas-
cularised surface tissue in which Hg is first sequestered into 
keratin and then eliminated by epidermal sloughing (Wage-
mann and Kozlowska 2005). Despite Hg excretion by des-
quamation, positive correlations had been reported between 
Hg levels in skin and internal organs like liver (e.g. Dall’s 
porpoises and small delphinids in Yang et al. 2002 and 
Aubail et al. 2013, respectively). The equation between Hg 
levels in skin and liver of delphinids (Aubail et al. 2013) 
allows calculating an estimated mean value and range of 
494 ± 490 (0.3–2,210) µg g−1 dw in the liver of southern 
long-finned pilot whales from Kerguelen Islands. Within that 
context, the present study showed for the first time signifi-
cant positive correlation between skin and muscle Hg values 
in cetaceans (Fig. 4). Hence, skin biopsy may be used as a 
nondestructive tool for assessing Hg concentrations of free-
ranging pilot whales and for predicting their Hg concentra-
tions in liver and muscle that are the two main Hg body res-
ervoirs in marine mammals (Yamamoto et al. 1987).

Hg burden was not previously investigated in the south-
ern long-finned pilot whale but was determined in the 
northern subspecies and in the congeneric short-finned pilot 
whale (Globicephala macrorhynchus) that lives in warmer 
waters. Muscle Hg concentration of pilot whales from Ker-
guelen Islands was close to the levels measured in popu-
lations inhabiting the Faroe Islands and northern Japan. It 
was 2.5 times lower than Hg level in specimens from the 
Lesser Antilles and 4.4–7.8 times lower than Hg concentra-
tions in animals living in the Mediterranean Sea (Corsica), 
southern Japan and New Caledonia (Table 3). Local bioge-
ochemistry, geology and anthropogenic activities indirectly 
affect Hg content of cetaceans through Hg concentrations 
of their prey. For example, pelagic organisms are naturally 
Hg enriched in the Mediterranean Sea due to high organic 
Hg availability, and consequently Mediterranean predators, 
including cetaceans, contain high Hg levels (Cossa and 
Coquery 2005; Savery et al. 2013). Conversely, the com-
paratively low Hg burden of Kerguelen pilot whales can be 
explained by the combination of low organic Hg availabil-
ity in subantarctic waters (Cossa et al. 2011) together with 

the absence of human activities releasing Hg in the area. 
Within odontocetes, the Kerguelen long-finned pilot whale 
was less contaminated or their muscle Hg concentrations 
were within the same range of values than most species so 
far investigated, but their muscle Hg level was consistently 
higher than that of mysticetes (Thompson 1990; Endo et al. 
2003, 2004, 2012). These taxa-related differences can be 
explained by different feeding habits, with baleen whales 
generally preying upon lower trophic level prey than 
toothed whales, i.e. crustaceans and small fish versus squid 
and larger fish, respectively.

Significant variations in Hg burdens occurred between 
the two mass-stranding events. Muscle Hg concentration 
was three times lower in 2010 than in 2006, with no cor-
responding change in skin values. These inter-annual dif-
ferences are difficult to interpret, but they might result from 
differential Hg turnover rates between skin and muscle 
that remain to be determined. Tissue Hg concentrations 
were positively correlated to individual TL in southern 
long-finned pilot whales, which is consistent with previ-
ous findings on cetaceans (Honda et al. 1983; Thompson 
1990; Leonzio et al. 1992). Since tissue δ15N values did 
not increase with TL, the size-related Hg change was not 
a consequence of a progressive dietary shift and there was 
therefore a decoupling between Hg concentrations and 
trophic position. Compared to males, female pilot whales 
grow more slowly, are smaller (mean adult lengths 4.5 ver-
sus 5.7 m) and live longer (up to 59 and 46 years, respec-
tively) (Bloch et al. 1993b). Hence, for a given body size, 
females are older than males and, accordingly, more Hg 
contaminated (Fig. 5). Overall, skin and muscle Hg con-
centrations were also higher in females, which is in agree-
ment with higher liver Hg levels in females than in males of 
the northern subspecies (Caurant et al. 1993).

In conclusion, both ecological tracers (δ13C, δ15N, Hg) 
and at-sea observations indicate that Kerguelen southern 
long-finned pilot whales foraged primarily in slope waters 
and oceanic subantarctic waters where they occupy a high 
trophic position. Their precise feeding habits remain to be 
determined, but it is likely that they prey on a mixed diet of 
fish and squid in the deep sea, as other populations of pilot 
whales do (Aguilar de Soto et al. 2008; Spitz et al. 2011). 
Muscle Hg concentration of southern long-finned pilot 
whales is close to or lower than that of many odontocete spe-
cies. Noticeably, they are less Hg contaminated than most 
pilot whale populations studied so far, thus suggesting that 
the southern subspecies is not at a high risk to Hg-induced 
damages in the remote islands of the Southern Ocean.
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