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• Trace elements and POPs were mea-
sured in various tissues of 10 Antarctic
prions.

• Residue diversity was notable given the
species' small size and low trophic
position.

• Cd, Se, BDE 183 and 209 showed notice-
ably high internal tissue concentrations.

• Several POPs showed inter- and
intra-tissue correlations, indicating
co-exposure.

• Blood was validated as a good
bioindicator of internal tissue As and
Hg levels.
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Trace elements (n= 14) and persistent organic pollutants (POPs, n= 30) weremeasured in blood, liver, kidney,
muscle and feathers of 10 Antarctic prions (Pachyptila desolata) from Kerguelen Islands, southern Indian Ocean,
in order to assess their concentrations, tissue distribution, and inter-tissue and inter-contaminant relationships.
Liver, kidney and feathers presented thehighest burdens of arsenic, cadmiumandmercury, respectively. Concen-
trations of cadmium, copper, iron, and zinc correlated in liver and muscle, suggesting that uptake and pathways
of metabolism and storage were similar for these elements. The major POPs were 4,4′-DDE, mirex, PCB-153 and
PCB-138. The concentrations and tissue distribution patterns of environmental contaminants were overall in ac-
cordance with previous results in other seabirds. Conversely, some Antarctic prions showed surprisingly high
concentrations of BDE-209. This compound has been rarely observed in seabirds before, and its presence in Ant-
arctic prions could be due to the species feeding habits or to the ingestion of plastic debris. Overall, the study
shows that relatively lower trophic level seabirds (zooplankton-eaters) breeding in the remote southern
Indian Ocean are exposed to a wide range of environmental contaminants, in particular cadmium, selenium
and some emerging-POPs, which merits further toxicological investigations.
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1. Introduction

Trace elements and persistent organic pollutants (POPs) are com-
monly found in terrestrial and aquatic ecosystems worldwide (Walker
et al., 2012). These environmental contaminants come from both natu-
ral and anthropogenic sources, and can exhibit toxic properties causing
endocrine dysfunction, mutagenesis, or reproductive and behavioural
disturbances (e.g., Scheuhammer, 1987; AMAP, 2004; Walker et al.,
2012). Although polar marine environments are isolated from the
major emission sources, they are reached by trace elements and POPs
through atmospheric and oceanic transport (Fitzgerald et al., 2007;
Galbán-Malagón et al., 2013). Many contaminants, such as mercury
(Hg) and POPs bioaccumulate in organisms and biomagnify in food
webs (Morel et al., 1998; Fisk et al., 2001). Thus, polarmarine predators
usually bear high burdens of contaminants (Bustnes et al., 2003;
Bargagli, 2008), with exposure being governed by various factors such
as foraging habitat and trophic position (Fisk et al., 2001; Carravieri
et al., 2013). Seabirds are often considered to be ideal models to bio-
monitor contaminants in the marine environment, since they forage
over large geographic areas and feed at different trophic levels
(Furness and Camphuysen, 1997). In contrast to Arctic species
(e.g., Braune et al., 2005; Dietz et al., 2009), contaminant exposure of
Southern Ocean seabirds has received little attention, although pioneer
studies have reported a wide diversity of compounds in their tissues
(Bocher et al., 2003; Tao et al., 2006; Anderson et al., 2010).

Several tissues have been used to evaluate seabird contamination,
particularly feathers (e.g., Bustnes et al., 2002; Seco Pon et al., 2011),
blood (e.g., González-Solís et al., 2002; Bustnes et al., 2007) and soft tis-
sues such as liver (e.g., Colabuono et al., 2012; Jerez et al., 2013). The in-
terpretation of contaminant burdens in these tissues depends on the
understanding of contaminant dynamics within the whole organism.
For instance, blood has a transport role for contaminants, and circulating
concentrations are believed to reflect short-term dietary exposure
(Burger and Gochfeld, 1997). On the other hand, the liver and kidney
are specifically involved in contaminant detoxification and/or storage,
while muscles could function as a temporary storage tissue (Lewis
and Furness, 1991). Finally, feathers are known to sequester both
metallic and organic contaminants during their synthesis (Burger,
1993; García-Fernández et al., 2013). Overall, however, these mecha-
nisms are still poorly known for the largemajority of environmental con-
taminants. Namely, there have been only few comprehensive studies that
have simultaneously quantified trace elements and POPs in a suite of
seabird tissues, and that have investigated between-contaminant and
between-tissue relationships (Eagles-Smith et al., 2008; Colabuono
et al., 2012). Data are particularly lacking for low trophic level seabirds,
because they usually bear lighter burdens of contaminants than top
predators, with residues being more difficult to detect.

The present study describes the concentrations of 14 trace elements
and 30 POPs (seven polychlorinated biphenyls, PCBs; 12 organochlorine
pesticides, OCPs; and 11 polybrominated diphenyl ethers, PBDEs)
in several internal tissues and in feathers of 10 Antarctic prions
(Pachyptila desolata) from Kerguelen Islands, a remote subantarctic ar-
chipelago in the southern Indian Ocean. The Antarctic prion breeds in
Antarctic and subantarctic islands, with important populations at
South Georgia (southern Atlantic Ocean), Auckland (southern Pacific
Ocean) and Kerguelen Islands (Weimerskirch et al., 1989; Marchant
and Higgins, 1990). At the latter locality, breeding Antarctic prions for-
age in cold waters where they prey primarily on swarming crustaceans
(pelagic amphipods) to feed their chicks (Weimerskirch et al., 1999;
Cherel et al., 2002). The composition of stomach oil indicates that adults
also prey on mid-water fish when they feed for themselves (Connan
et al., 2007). During the inter-breeding season, birds shift north to the
warmer subtropical waters where they moult (Quillfeldt et al., 2015).

Our main goal was to investigate the contaminant distribution pat-
tern, and inter-tissue and inter-contaminant relationships, in order to
depict co-exposure and/or similar bioaccumulation and detoxification
patterns among contaminants. Furthermore, correlations of soft tissue
burdens with blood and/or feather concentrations is necessary to vali-
date the use of these tissues as appropriate proxies of internal contam-
ination, which has surprisingly received little attention in polar seabirds
(Henriksen et al., 1998; Bustnes et al., 2003). Based on previous knowl-
edge (Bocher et al., 2003), we expected the liver to bear high contami-
nant burdens when compared to other organs, and feathers to present
high Hg concentrations, considering their excretory role (Braune and
Gaskin, 1987). Given the relatively low trophic level, and thus potential-
ly low contaminant exposure of Antarctic prions, we expected overall
low contaminant concentrations in this species when compared to
higher trophic level seabirds from the same environments.

2. Materials and methods

2.1. Sample collection and preparation

Ten freshly dead Antarctic prions trapped in the vegetation (Acaena
adscendens) were opportunistically collected on January 26th, 2012, on
the Kerguelen archipelago (49°21′S, 70°18′E), southern Indian Ocean.
Only intact specimens were collected and then stored at −20 °C until
dissection. Age and breeding status of birds were not known. However,
because in Kerguelen Islands Antarctic prions' eggs are laid in December
(incubation of the single white egg takes 44–46 days) and chicks fledge
at 45–55 days old (Weimerskirch et al., 1989) these birds cannot be
newly fledged chicks.

During necropsies, internal tissues (liver, kidneys and pectoral
muscle) were sampled, weighed and wrapped individually in plastic
bags and in aluminium foils for trace element and POP analyses, respec-
tively. The stomachs were also dissected in order to check their con-
tents. Plastic debris were found in five individuals. Clotted blood was
collected from heart auricles and stored in microtubes at−20 °C. Four
body feathers were pulled out from the lower back and stored dry in
plastic bags. Birds were first sexed during necropsies by visual gonad
examination. Sex was then confirmed using the molecular method de-
scribed by Fridolfsson and Ellegren (1999). Prior to chemical analyses,
internal tissues and blood were freeze-dried, ground to powder and
then stored in plastic and glass tubes for trace element and POP analy-
ses, respectively. Feathers were washed to remove surface dirt and
adsorbed contaminants in a chloroform-methanol solution and then
oven dried as described by Carravieri et al. (2013). For each individual,
the four body feathers were pooled to limit potential inter-feather dif-
ferences in trace element concentrations (Carravieri et al., 2014a);
feathers were homogenised by cutting them with scissors into small
fragments (1–2 mm). Samples were weighed before and after freeze-
drying to calculatewater content (moisture, see Table S1, Supplementa-
ry material).

2.2. Analyses of trace elements

Trace elements were determined in blood, liver, kidney, muscle and
feathers. Total Hg analysis was carried out with an advanced mercury
analyser (ALTEC AMA 254) on dried tissue aliquots (2–4 mg) following
Blévin et al. (2013). All analyses were repeated 2–3 times until having a
relative standard deviation b10%. Accuracy was checked using TORT-2
Lobster Hepatopancreas (NRC, Canada) as certified reference material
(CRM) with a certified Hg concentration of 0.27 ± 0.06 μg g−1 dry
weight (dw). Our measured values were 0.267 ± 0.006 μg g−1 dw
(n = 18). Thirteen other elements (silver, Ag; arsenic, As; cadmium,
Cd; cobalt, Co; chromium, Cr; copper, Cu; iron, Fe; manganese, Mn;
nickel, Ni; lead, Pb; selenium, Se; vanadium, V; and zinc, Zn) were
analysed using a Varian Vista-Pro ICP-OES and a Thermo Fisher Sci-
entific X Series 2 ICP-MS (following Métian et al., 2008). Aliquots of
the biological samples (30–300 mg) were digested with 6 ml
67–70% HNO3 and 2 ml 34–37% HCl (Fisher Scientific, trace element
grade quality), except for feathers (1.8 ml HNO3 and 0.6 ml HCl).
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Acidic digestion was carried out overnight at room temperature and
then in a Milestone microwave (30 min with constantly increasing
temperature up to 120 °C, and finally 15min at this maximal temper-
ature). Each sample was completed to 50 ml (15 ml for feathers)
with milli-Q water. Three control samples (two CRM, and one
blank) treated and analysed in the same way as the samples were in-
cluded in each analytical batch. CRMs were DOLT-4 dogfish liver
(NRC, Canada) and TORT-2 (NRC, Canada). The results were in good
agreement with CRMs, with a mean recovery rate of 87–104% for
DOLT-4 and 88–102% for TORT-2. The limits of detection (LoD) are
given in Table S2, Supplementary material. Trace element concentra-
tions are expressed in μg g−1 dw.
2.3. Analyses of persistent organic pollutants (POPs)

POPs were analysed in liver, kidney and muscle. Seven indicators
PCBs (CBs 28 + 50, 52, 101, 118, 138, 153, and 180) were targeted.
These compounds are predominantly present in biotic and abiotic ma-
trices and were thus recognised as compounds representative of the
whole group of PCBs by the Agency for Toxic Substances and Disease
Registry (ATSDR, 2000). Additionally, 12OCPs (HCB,γ-HCH, heptachlor,
cis-chlordane, trans-nonachlor, 2,4′-DDE, 4,4′-DDE, 2,4′-DDD, 4,4′-DDD,
2,4′-DDT, 4,4′-DDT andmirex) and 11 PBDEs (BDEs 17, 28, 47, 49 + 71,
66, 99, 100, 153, 154, 183 and 209) were also assayed. PCB and OCP
standard solutions were provided by NIST (via LGC Standards,
Molsheim, France, see Table S3, Supplementary material) while PBDE
standards were provided by Wellington Laboratories (via BCP Instru-
ments, Irigny, France). Analytes were extracted using microwave
assisted extraction (Milestone Start-E) with 10 ml of dichloromethane
on homogenised freeze-dried samples (0.2–1.0 g) spiked with internal
standards: CBs 30, 103, 155 and 198, F-BDE-47 (Chiron, via BCP Instru-
ments), DDTd8 (supplied by Dr. Ehrenstorfer), BDE-181 (Wellington
Laboratories) and BB-209 (LGC Standards, Molsheim, France) (5–8 ng
each) (Müller et al., 2001; Tapie et al., 2008). Extracts were re-
concentrated into 300 μl of isooctane, using a RapidVap vacuum evapo-
ration system from Labconco (Kansas City, MO, USA) and a nitrogen
flow, prior to purification on acid silica gel column. PCBs, OCPs
and PBDEs were eluted with 3 x 5 ml of pentane/dichloromethane
(90/10; v/v), and final extracts were concentrated and transferred into
isooctane as solvent keeper. Octachloronaphthalene (1 ng) was
added as performance standard to quantify internal standards. Lipids
were determined by gravimetry after filtration and evaporation of an
aliquot of the DCM extract. PCBs and OCPs analyses were carried out
on an HP 5890 series II gas chromatograph from Hewlett-Packard
(Avondale, CA, USA) coupled to a 63Ni electron capture detector
(ECD). A capillary column HP5-MS (Agilent Technologies, Massy,
France) was used (30 m × 0.25 mm × 0.25 μm). Helium (He, 5.6
quality, Linde Gas, Toulouse, France) was used as carrier gas at a
flow rate of 1 ml min−1 and nitrogen (N2, 5.0 quality, Linde Gas,
Toulouse, France) was used asmake up gas (60mlmin−1). The injec-
tor temperature was 280 °C and detector temperature was 320 °C
(Tapie et al., 2011).

PBDEs were analysed by gas chromatography coupled with mass
spectrometry operated in negative chemical ionisation (GC–NCI-MS).
Analyses were carried out using an Agilent 6890N GC coupled
to a Quattro Micro GC (Waters Micromass). The system was fitted
with J&W HP-5MS analytical column (15 m, 0.25 mm ID × 0.25 μm
film thickness; Agilent Technologies, Massy, France) and operated
in pulsed splitless injection mode (1.7 bar, 3 min) with an injector tem-
perature of 280 °C. The helium carrier gas flow rate was 1.8 ml min−1

and temperature programme was as follows: 90 °C (0.1 min), 185 °C
(25 °C min−1), 275 °C (15 °C min−1), and 305 °C (35 °C min−1, held
for 2 min). The transfer line temperature and the source temperature
were set at 300 °C and 250 °C, respectively. Ions were monitored in
SIM mode using a single acquisition window, with a dwell time set at
50 ms. [Br]− (m/z 79 and 81) was monitored for all PBDEs while m/z
402 and 404 were monitored for OCN.

PCBs, OCPs and PBDEs compounds were quantified relative to
internal standards. CBs 30, 103, 155 and 198 were used to quantify
PCBs, and DDTd8 was used to quantify OCPs, whereas F-BDE-47, BDE-
181 and BB-209 were used to quantify PBDEs. A syringe standard
(octachloronaphthalene) was used to quantify internal standards
and verify recoveries for each sample. Quality control consisted of
the analysis of solvent procedural blanks, reproducibility and repeat-
ability tests, injection of standard solutions as unknowns, and CRM
analysis (SRM 1947, National Institute of Standards and Technology,
USA) for PCBs, OCPs (except for γ-HCH, heptachlor and cis-
chlordane), and PBDEs (except for BDEs 17, 18, 49, 71, 183 and
209). Procedure details are given in Tapie et al. (2008). As described
by Labadie et al. (2010), POP concentrations were blank corrected
and the LoD was derived from the blank value variability. For
analytes that were not detected in blanks, LoD was determined as
the concentration with a signal to noise ratio of three. Regardless of
the approach used for LoD calculation, the LoQ was set at three
times the LoD for all analytes. LoD and LoQ values are reported in
Table S4, Supplementary material.

2.4. Statistical analyses

Tissue contaminants with concentrations NLoQ in b70% individuals
were included in summary statistics but excluded from subsequent sta-
tistical analyses (Borgå et al., 2006; Anderson et al., 2010). Therefore,
contaminants included in statistical analyses were 10 trace elements
(As except in feathers, Cd, Cr except in blood, Cu, Fe, Hg, Mn, Ni except
in blood and feathers, Se and Zn), 4 PCBs (CBs 118, 138, 153 and 180),
9 OCPs (HCB, γ-HCH and 2,4′-DDE except in kidney, cis-chlordane,
trans-nonachlor, 4,4′-DDE, 4,4′-DDD and 4,4′-DDT only in muscle, and
mirex), and only 2 PBDEs (BDE-28 except in kidney, and BDE-183
only in muscle). For these contaminants, concentrations bLoQ and the
detection limit (LoD) were replaced by LoQ ∗ 0.5 and LoD ∗ 0.5, respec-
tively, and considered for statistical analyses (Anderson et al., 2010).
Statistical analyses were performed using R 2.15.1 (R Core Team,
2012) mainly following Crawley (2007). All data were first checked
for normality and homogeneity of variances by means of Shapiro–
Wilk and Bartlett tests, respectively. In general, these assumptions
were not achieved, non-parametric analysis of variance was thus ap-
plied to assess differences in contaminant concentrations between tis-
sues or gender (Wilcoxon tests). Relationships between contaminant
concentrationswithin and between tissueswere tested using Spearman
correlation rank tests. For these latter tests, the sum (Σ) of different POP
categories was also considered (i.e., Σ7PCBs, Σ12OCPs, Σ11PBDEs and
Σ30POPs). Statistical significance of correlation coefficients was evaluat-
ed by using a bootstrap estimation method (Hall, 1992), with details
being presented in Tables S5, S6, S7 and S8 of the Supplementary mate-
rial. Concentrations are presented asmean± standard deviation (SD) in
μg g−1 or ng g−1 dw.

3. Results

3.1. Influence of sex on trace element and POP concentrations

No consistent gender differences were found in tissue concentra-
tions of trace elements and POPs. Hence, female (n = 5) and male
(n = 5) data were pooled for subsequent statistical analyses. Only five
out of 101 comparisons were significantly different, namely (i) higher
As and Cd concentrations in blood (respectively Wilcoxon test, W = 1,
p = 0.019; W = 1.5, p = 0.027), and (ii) lower Hg concentrations in
blood (W = 25, p = 0.012), kidney (W = 24, p = 0.016) and muscle
(W = 22.5, p = 0.046) and slightly lower in liver (W = 21, p =
0.094) of females than males.
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3.2. Tissue distribution of trace elements

Of all the targeted 14 trace elements, only Ag, Pb and V had concen-
trations below the LoD in all or almost all tissues (Table 1). Kidney and
feathers presented the highest concentrations of the non-essential ele-
ments Cd and Hg, respectively (Wilcoxon test, 0 b W b 100,
0.002 b p b 0.0002) (Fig. 1). Liver presented the highest concentrations
of the essential elements As, Fe, Mn and Zn (Wilcoxon or t tests,
81 b W b 100 or 6.48 b t b 15.7, all p b 0.0001), muscle had the highest
amount of Cu (95 b W b 100, all p b 0.0001) and blood showed the
highest amount of Se (1.18 b t b 8.99, 0.0001 b p b 0.015).

3.3. Between-tissue and between-trace element relationships

Between-tissue relationships were investigated for each trace
element. Only 11 correlations were significant out of 140, of which 8
were between blood and soft tissues. Significant positive relationships
were found for Hg between blood and all soft tissues (Spearman test,
0.694 b rho b 0.776, 0.008 b p b 0.026) (Fig. 2), and between muscle
and liver and kidney (rho = 0.661 and 0.646, p = 0.038 and 0.043, re-
spectively). Significant positive correlations were also found for As be-
tween blood and kidney (rho = 0.778, p = 0.009). Between-element
relationships were investigated within each tissue. Concerning non-
essential trace elements, there were only significant relationships be-
tween Cd and Hg in liver (rho= 0.693, p= 0.026). Among essential el-
ements, correlationswere particularly strong between Cr andNi in liver,
kidney andmuscle (0.889 b rho b 0.957, 0.0001 b p b 0.0006). Other sig-
nificant relationships involved Cu, Fe, Mn and Zn in blood (0.711 b rho b
0.862, 0.004 b p b 0.018), liver (0.713 b 0.764, 0.013 b p b 0.041) and
muscle (0.841 b rho b 0.934, 0.0003 b p b 0.004). Cd was involved in
the majority of relationships between essential and non-essential ele-
ments in all tissues (for example in blood: As–Cd, Cd–Cu, Cd–Fe, Cd–
Mn and Cd–Zn; and in muscle: Cd–Cu, Cd–Fe, Cd–Mn and Cd–Zn).

3.4. Tissue distribution of POPs

Of the 30 targeted POPs, only the followingwere below the LoD in all
samples: 2,4′-DDD, BDE-17, BDE-49 + 71, BDE-66, and BDE-100
(Table 2). In all tissues, the PCB pattern was dominated by CB-
153 N CB-138 N CB-118, which together accounted for more than 75%
of the PCB burden. The prevalent OCPswere 4,4′-DDE Nmirex NHCB, to-
talling more than 90% of the OCP burden. Among PBDEs, the highest
concentrations were reported for BDE-209, but only three individuals
had quantifiable levels. In contrast to PCBs and PBDEs, OCP concen-
trations varied among tissues (Fig. 3). Namely, γ-HCH, 2,4′-DDE, cis-
chlordane and trans-nonachlor concentrations were higher in liver
and muscle than in kidney (Wilcoxon test, 22 b W b 83, 0.015 b p b

0.045), and HCB concentrations were higher in liver and kidney than
in muscle (7 b W b 18, 0.0005 b p b 0.015).

3.5. Between-tissue and between-POP relationships

All between-tissue correlations were significant for Σ30POPs and
Σ12OCPs (Spearman test, rho N 0.7, p b 0.045). Several individual PCB
and OCP compounds were also significantly correlated between tissues,
in particular between liver and kidney (4,4′-DDE, mirex, HCB, CB-138,
CB-153 and CB-180, Fig. 4). Relationships between POPs within each
tissue were also determined. Σ7PCBs and Σ12OCPs were significantly
correlated in muscle, kidney and liver (0.842 b rho b 0.879,
0.002 b p b 0.004). Significant relationships were found within two
groups of compounds. The first group consisted of 4,4′-DDE, mirex,
HCB, trans-nonachlor, CB-138, CB-153 and CB-180, which correlated
in liver, kidney andmuscle (Fig. 5). Additionally, 4,4′-DDDwas strongly
correlated to these compounds in muscle (0.873 b rho b 0.932,
0.001 b p b 0.004). The second group consisted of γ-HCH, 2,4′-DDE,
cis-chlordane, CB-118 and BDE-28, which correlated in liver



Fig. 1. Cd, Cu, Hg and Se concentrations (μg g−1 dw) in blood (B), liver (L), kidney (K), muscle (M) and feathers (F) of Antarctic prions from Kerguelen Islands (n = 10).
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(0.951 b rho b 0.644, 0.001 b p b 0.004). In muscle, significant correla-
tions were only found between γ-HCH and 2,4′-DDE (rho = 0.832,
p = 0.001), 4,4′-DDT and 2,4′-DDE (rho = 0.673, p = 0.028), and be-
tween cis-chlordane and CB-118 (rho = 0.861, p = 0.002). The same
correlations were highlighted using concentrations normalised by
lipid content.

4. Discussion

Contaminant levels of procellariiform seabirds in the southern
Indian Ocean have been previously investigated, focussing on trace ele-
ments (Hindell et al., 1999; Bocher et al., 2003; Blévin et al., 2013;
Carravieri et al., 2013, 2014a, 2014b, 2014c) and POPs (Guruge et al.,
2001a, 2001b; Tanabe et al., 2004; Carravieri et al., 2014b). However,
to our knowledge, the present study is the first to consider such a
large number of contaminants (n= 30), in particular PBDEs, measured
on a significant number of tissues (n = 3 to 5) of the same individual
birds (n = 10). The extent of metallic and organic contamination in
the species is remarkable when considering both its small size and rel-
atively low trophic position.

4.1. Tissue distribution of trace elements: comparison with other seabirds
and other areas

Essential element concentrations (As, Co, Cu, Fe, Mn, Se and Zn) in
internal tissues and feathers were in accordance with most previous
studies on Southern Ocean Procellariiformes (Lock et al., 1992; Bocher
et al., 2003; Seco Pon et al., 2011; Jerez et al., 2013). Surprisingly howev-
er, Cu and Fe concentrations in feathers were 30 and 100 times lower,
respectively, than those observed in Antarctic prions from South
Georgia (Anderson et al., 2010). In this last study, Cu and Fe concentra-
tions were largely variable between individuals. Moreover, feathers
were cleaned, but not washed prior to analysis, which may have intro-
duced some errors into trace element results (Anderson et al., 2009), es-
pecially when considering that Antarctic prions nest in burrows or rock
crevices. In contrast to soft tissues and feathers, essential element con-
centrations in blood were not in accordance with the literature
(e.g., González-Solís et al., 2002; Anderson et al., 2010), with concentra-
tions being higher than expected for Cu, Mn and Zn, and lower for Fe.
This could be linked to the fact that blood was collected from heart au-
ricles after death, instead of being sampled from living animals. The
birds of the present study probably died of exhaustion, which could in-
fluence blood essential element concentrations. Previous research
showed that body condition is one of the most important factors
influencing essential element concentrations in blood, especially in the
case of Cu, Fe and Zn (Debacker et al., 2000; Malinga et al., 2010). No
major differences, except for blood, were found in essential element
concentrations between Antarctic prions and seabirds feeding at higher
trophic levels, such as albatrosses (e.g., Kim et al., 1998; Seco Pon et al.,
2011). This is not surprising since essential elements are submitted to
homeostatic control, with their absorption being regulated according
to the nutritional requirements of the individual (Walsh, 1990). As
expected, Fe, Mn and Zn were preferentially accumulated in the
liver, where they appeared to be closely regulated (Elliott and
Scheuhammer, 1997). In contrast and as previously observed by
Bocher et al. (2003), Cu concentration was higher in muscle than in
liver. This accumulation pattern has been reported in Barau's petrels
(Pterodroma baraui) and Audubon's shearwaters (Puffinus lherminieri
bailloni) from Réunion Island (Kojadinovic et al., 2007a). Se distribution
in prion soft tissues is in agreement with previous works showing that
this essential element is preferentially retained in kidney (e.g., Kim
et al., 1998; Mendes et al., 2008). As already shown in Antarctic prions
and other planktonophagous petrels at South Georgia (Anderson et al.,
2010), blood Se concentrations were high, especially in comparison to
wandering albatrosses from the southern Indian Ocean (Carravieri
et al., 2014b). At the Kerguelen Islands, Antarctic prions feed largely
on the pelagic amphipod Themisto gaudichaudii (Cherel et al., 2002),
which bear large quantities of Se (Anderson et al., 2010). This suggests
that the large Se burden in Antarctic prions' blood is diet-derived.

Tissue concentrations of the non-essential elements Cd, Hg and Pb
were in the same range of those found in small planktonophagous
petrels at Kerguelen Islands (Bocher et al., 2003) and in other
Procellariiformes worldwide (Kim et al., 1998; Kojadinovic et al.,
2007a; Anderson et al., 2009, 2010; Bond and Lavers, 2011). Pb
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Table 2
Persistent organic pollutant concentrations (mean±SD, ng g−1 dw and, in italics, ng g−1 lipidweight (lw); number of samples above the limit of detection (LoD) are given in brackets) in liver, kidney andmuscle of 10 Antarctic prions fromKerguelen
Islands.

CB-50 + 28 CB-52 CB-101 CB-118 CB-138 CB-153 CB-180 Ʃ7PCBs

Liver 1.10 (bLoD—2.5) 2.8 (bLoD—6.2) 2.6 (bLoD—6.1) 5.7 ± 2.0 8.3 ± 3.5 14 ± 7 2.5 ± 1.4 37 ± 16
7.9 (bLoD—21.4) (5) 21.1 (bLoD—53.0) (5) 19.2 (bLoD—46.0) (5) 44.2 ± 16.6 (10) 65.6 ± 31.4 (10) 97.6 ± 61.3 (10) 20.1 ± 11.6 (10) 275 ± 146

Kidney 0.24 (bLoD—1.63)
bLoQ

0.65 (bLoD—3.99) 3.6 ± 2.4 6.1 ± 3.4 10 ± 6 1.7 ± 1.3 23 ± 12
1.4 (bLoD—8.5) (1) 3.9 (bLoD—21) (1) 24 ± 17 (7) 41 ± 25 (10) 66 ± 47 (10) 12 ± 9.4 (10) 151 ± 95

Muscle 1.5 (bLoD—7.5) 3.1 (bLoD—14.8) 2.4 (bLoD—12.4) 5.0 ± 2.8 6.8 ± 3.8 12 ± 7 2.2 ± 1.3 33 ± 18
15 (bLoD—73) (6) 28 (bLoD—144) (5) 22 (bLoD—121) (5) 53 ± 28 (10) 74 ± 47 (10) 131 ± 88 (10) 24 ± 17 (10) 347 ± 199

HCB γ-HCH Heptachlor Cis-chlordane Trans-nonachlor 2,4′-DDE 4,4′-DDE 2,4′-DDD 4,4′-DDD 2,4′-DDT 4,4′-DDT Mirex Ʃ12OCPs

Liver 21 ± 8 0.58 ± 0.28 bLoD 1.9 ± 0.9 1.0 ± 0.5 0.96 ± 0.35 50 ± 51 bLoD bLoQ bLoQ bLoQ 25 ± 17 103 ± 68
163 ± 66 (10) 4.4 ± 2.1 (9) 14 ± 5.5 (10) 8.1 ± 4.1 (10) 7.5 ± 2.8 (10) 402 ± 431 (10) 197 ± 135 (10) 797 ± 575

Kidney 16 ± 6 0.27 (bLoD—0.78) bLoD 1.0 ± 0.8 0.56 ± 0.40 0.43 (bLoD—1.07) 32 ± 41 bLoD 0.46 (bLoD—2.87) bLoQ bLoQ 23 ± 22 75 ± 60
108 ± 52 (10) 1.7 (bLoD—4.1) (5) 6.9 ± 4.9 (7) 4.0 ± 3.0 (8) 2.9 (bLoD—5.6) (6) 221 ± 283 (10) 3.4 (bLoD—22) (1) 160 ± 174 (10) 509 ± 442

Muscle 9.8 ± 2.3 0.53 ± 0.58 bLoQ 1.3 ± 1.0 0.78 ± 0.28 0.80 ± 0.93 46 ± 53 bLoD 2.2 ± 1.4 bLoQ 0.27 ± 0.22 22 ± 11 85 ± 64
107 ± 40 (10) 5.1 ± 5.5 (9) 13 ± 9.9 (10) 8.5 ± 3.6 (10) 7.9 ± 9.0 (9) 509 ± 631 (10) 24 ± 16 (8) 2.6 ± 2.1 (8) 242 ± 147 (10) 920 ± 775

BDE-17 BDE-28 BDE-47 BDE-49 + 71 BDE-66 BDE-99 BDE-100 BDE-153 BDE-154 BDE-183 BDE-209 Ʃ11PBDEs

Liver bLoD 0.22 ± 0.14 bLoQ bLoD bLoD bLoD bLoD 0.31 (bLoD—1.5) 0.04 (bLoD—0.26) 0.34 (bLoD—2.3) 115 (bLoD—1023) 118 ± 326
1.7 ± 1.1 (10) 2.4 (bLoD—12) (2) 0.37 (bLoD—2.2) (1) 2.7 (bLoD—19) (2) 957 (bLoD—8711) (3) 983 ± 2734

Kidney bLoD bLoQ 0.06 (bLoQ—0.13) bLoD bLoD bLoQ bLoD 0.13 (bLoD—0.75) 0.03 (bLoD—0.18) 0.20 (bLoD—1.4) 36 (bLoD—321) 37 ± 101
0.10 (bLoQ—0.16) (5) 0.41 (bLoD—2.8) (2) 0.11 (bLoD—0.18) (1) 0.50 (bLoD—3.9) (2) 316 (bLoD—2659) (4) 290 ± 844

Muscle bLoD 0.23 ± 0.37 0.03 ± 0.02 bLoD bLoD 0.02 (bLoD—0.04) bLoD 0.27 (bLoQ—1.3) 0.06 (bLoD—0.30) 0.32 ± 0.62 4.1 (bLoD—25) 5.8 ± 10
2.3 ± 3.6 (8) 0.28 ± 0.22 (9) 0.18 (bLoD—0.47) (1) 2.9 (bLoQ—15) (4) 0.69 (bLoD—3.6) (2) 3.5 ± 7.2 (7) 41 (bLoD—244) (5) 59 ± 103 759
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Fig. 3. Ʃ7PCBs and selected OCPs (HCB, mirex and 4,4′-DDE) concentrations (ng g−1 dw) in liver, kidney and muscle of Antarctic prions from Kerguelen Islands (n = 10).
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as shown here, is a usual trend in seabirds (Nam et al., 2005;
Kojadinovic et al., 2007a; Mendes et al., 2008), and according to
Scheuhammer (1987), a higher Cd concentration in kidney than in
liver usually indicates chronic exposure to low Cd levels. Whatever
the tissue type, Hg concentrations were lower in Antarctic prions
than in fish- or squid-eating seabirds, such as albatrosses (Anderson
et al., 2009; Carravieri et al., 2014b; Bustamante et al. 2016). This is con-
sistent with Hg biomagnification within food webs, which leaves top
predators at high risk of exposure through food intake (Furness and
Camphuysen, 1997;Morel et al., 1998). As expected, thehighest Hg con-
centrationwas found in feathers, since a large proportion of theHgbody
burden can be excreted in the plumage duringmoult (up to 93%, Braune
and Gaskin, 1987). Among soft tissues, liver presented the highest Hg
concentrations, due to its important role in Hg detoxification and stor-
age (Monteiro and Furness, 1995; Kim et al., 1998).
Fig. 4. Relationship between liver and kidney concentrations (ng g−1 dw) of Ʃ
4.2. Tissue distribution and relative proportion of POPs: comparison with
other seabirds and other areas

Overall, POP concentrations in Antarctic prions' tissues were low
compared to the Southern Ocean Procellariiformes studied so far.
Since POPs biomagnify in food webs, their accumulation in seabirds de-
pends largely on their diet and trophic position (Borgå et al., 2001, 2005;
Buckman et al., 2004). Accordingly, Ʃ7PCBs concentrations in Antarctic
prions were similar to those of Antarctic petrels (Thalassoica antarctica)
and Cape petrels (Daption capense) (Van den Brink, 1997), which also
feed mainly on crustaceans. Ʃ7PCBs concentrations were lower than
those of seabirds feeding at higher trophic levels, such as albatrosses
and petrels (Guruge et al., 2001a, 2001b; Colabuono et al., 2012). Simi-
larly, Ʃ12OCPs concentrations in Antarctic prions were lower than those
detected in albatrosses or skuas (Guruge et al., 2001a; Corsolini et al.,
12OCPs and CB-153 in Antarctic prions from Kerguelen Islands (n = 10).



Fig. 5. Relationship between CB-153 and CB-180 concentrations (ng g−1 dw) in liver, kid-
ney and muscle of Antarctic prions from Kerguelen Islands (n = 10).

Fig. 6. POPs proportion in liver, kidney and muscle of Antarctic prions from Kerguelen Islands
b0.5% were not included (γ-HCH, heptachlor, 2,4′-DDD, 2,4′-DDT, 4,4′-DDT, and BDEs 28, 47, 9
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2002), and similar to those in low trophic levels seabirds (Buckman
et al., 2004; Mallory et al., 2004). Concentrations of OCPs and PCB con-
geners tended to be higher in liver (Table 2), which is consistent with
its highmetabolic activity and its role in lipophilic pollutantmetabolism
(Malcolm et al., 2003). Overall, the PCBswere largely less abundant than
OCPs in all tissues (Fig. 6), as previously shown in the plasma of Crozet
wandering albatrosses (Carravieri et al., 2014b). This pattern is probably
linked to the large distance of these environments to industrialised
zones and to the fact that PCBs were used in a less dispersive manner
than OCPs. The high contribution of CBs 138, 153 and 180 to the PCB
burden in Antarctic prions' tissues from Kerguelen Islands is similar to
earlier data from various Southern Ocean seabirds (e.g., Court et al.,
1997; Guruge et al., 2001a; Corsolini et al., 2011, Carravieri et al.,
2014b) and Arctic regions (e.g., Henriksen et al., 1998, 2000; Buckman
et al., 2004). Birds' capacity to metabolise PCBs decreases with increas-
ing degree of PCB chlorination (Maervoet et al., 2004). Therefore, more
chlorinated compounds like CBs 118, 138, 153 and 180 tend to be
accumulated, while CBs 52 or 101 are more prone to be metabolised.
The contribution of individual OCPs was also similar to earlier studies.
4,4′-DDE dominated the OCP pattern in Arctic and Antarctic seabirds,
followed by HCB and mirex (Henriksen et al., 2000; Borgå et al., 2001;
Goerke et al., 2004; Carravieri et al., 2014b). The particularly strong oc-
currence of 4,4′-DDE to OCPs in seabirds may be due to both dietary ac-
cumulation and DDT metabolism (Borgå et al., 2001). As shown by
Sagerup et al. (2009), cis-chlordane, trans-nonachlor and γ-HCH
presented lower liver concentrations than the most predominant
OCPs, since these compounds seem to be more easily metabolised and
excreted (Borgå et al., 2001). Typical PBDEpatterns inwildlife, including
seabirds, are dominated by BDE-47, followed by nearly equal contribu-
tions of BDEs 99, 100, 153 and 154 (Vorkamp et al., 2004; Fängström
et al., 2005; Verreault et al., 2010). Surprisingly, BDE-183 and BDE-209
were detected in all tissues of someAntarctic prions, with BDE-209 con-
centrations being very high. The latter is the main component of
decaBDE, a commercial mixture, which production and use is not regu-
lated by the Stockholm Convention on POPs (www.pops.int). BDE-183
and BDE-209 have been recently documented in the tissues of some pe-
lagic seabirds and marine mammals (Fängström et al., 2005; Jenssen
et al., 2007; Tanaka et al., 2013). The presence of high brominated com-
pounds in seabirds from these remote environments is puzzling, but ex-
posure in northern wintering areas or along the migratory routes of
some individual prions (Quillfeldt et al., 2015) is likely. Furthermore,
BDE-183 and BDE-209 have a strong affinity to particles and have
been detected in marine plastic debris, including at high concentrations
(Hirai et al., 2001). Seabirds are prone to ingest plastic debris, mistaking
them for prey (e.g., Ryan et al., 2009) and plastic-mediated exposure to
BDE-183 and BDE-209 has already been hypothesised in short-tailed
shearwaters (Puffinus tenuirostris) (Tanaka et al., 2013). Plastic pollution
has been recently identified as a threat to subantarctic and Antarctic
(n = 10). Values correspond to median concentrations. Compounds with a contribution
9, 153, 154, 183, 206 and 207).

http://www.pops.int
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environments (Ivar do Sul et al., 2011). Plastic debris were found in five
of our 10 individuals, confirming that this species is indeed prone to
plastic ingestion. This result supports the hypothesis that the exposure
to BDE-183 and BDE-209 in Antarctic prions from Kerguelen Islands
could be plastic-mediated.
4.3. Relationships among tissues and between contaminants

In the present study, a large number of positive correlations were
observed between trace elements in Antarctic prions' tissues, in broad
agreement with the few previous investigations in seabirds (e.g., Nam
et al., 2005; Mendes et al., 2008; Jerez et al., 2013). Concentrations of
Cu, Fe, Mn and Zn presented positive relationships (Cu–Fe, Cu–Mn,
Cu–Zn, Fe–Mn, Fe–Zn and Mn–Zn), especially in liver and muscle,
whichmay indicate common sources of exposure, similar storage path-
ways, regulation and/or detoxification processes (e.g., Jerez et al., 2013).
Additionally, these elements presented strong relationships with Cd
that can be explained by Cd having similar regulatory mechanisms to
Cu and Zn, such as detoxification by binding to metallothioneins and
insolubilisation in mineral concretions (Ikemoto et al., 2004;
Kojadinovic et al., 2007b; Lucia et al., 2009, 2012). Feathers and blood
are the most targeted tissues to quantify trace element concentrations
in birds mainly because they can be easily and non-destructively sam-
pled on a large number of live individuals (e.g., Burger and Gochfeld,
2004). Importantly, the proportion of the body burden stored in the
feathers is relatively constant for some elements, particularly Hg
(Burger, 1993; Monteiro and Furness, 1995). Here, feather trace ele-
ment concentrations, and particularly Hg, were not significantly corre-
lated to the other tissues. The likely explanation of this discrepancy is
a temporal mismatch between concentrations in metabolically active
versus inactive tissues (soft tissues and feathers, respectively). Once
the feather is formed, the blood supply atrophies, with no further ele-
ment being deposited. Hence, feather Hg concentrations in Antarctic
prions had not changed since their last moult, whereas Hg concentra-
tions in the other tissues had progressively increased through dietary
intake (bioaccumulation). Thus, feather Hg concentration reflects Hg
levels of internal organs at the time of the previous moult, but not at
the time of sampling. Cd and Pb are firmly bound to organic and inor-
ganic compounds in kidney and bone, respectively, and thus only
enter feathers in trace amounts (Walsh, 1990; Furness, 1993; Stewart
et al., 1994). Therefore, it would be better to consider cautiously the
use of feather concentrations to predict soft tissues burdens for
these two non-essential elements (Nam et al., 2005). On the other
hand, blood Hg concentration (Fig. 2), and to a lesser extent blood As
concentration, appeared to be very good indicators of soft tissue
concentrations.

Little information is available on POP inter-tissue and inter-
compound relationships. In Antarctic prions, some PCBs (CBs 118,
138, 153 and 180) and OCPs (HCB, 4,4′-DDE and mirex) presented
strong positive inter-tissue correlations. This pattern has been report-
ed in seabirds including albatrosses and petrels (e.g., Henriksen et al.,
1998; Colabuono et al., 2012). These compounds are highly persis-
tent, highly lipophilic, and slowly metabolised (e.g., Borgå et al.,
2001). Therefore, they partition among the various tissue lipid
fractions relatively quickly to establish equilibrium (Norstrom,
2002). The most persistent POPs such as CB 153 and 180 were also
highly correlated within each tissue (Fig. 5), likely indicating co-
exposure. Interestingly, significant positive relationships were also re-
ported between PCBs and OCPs in all tissues (e.g., between 4′-DDE,
mirex, HCB, trans-nonachlor, CB-138, CB-153 and CB-180). Correla-
tions between POPs of different chemical families have previously
been documented in seabirds' plasma, and strongly suggest that con-
taminant exposure happens by feeding on prey containing similar rel-
ative amounts of both PCBs and DDTs (Bustnes et al., 2001; Mora
et al., 1993; Finkelstein et al., 2006).
5. Conclusions

The present study shows that relatively low trophic level seabirds
(zooplankton-eaters) breeding in the remote southern Indian Ocean
are exposed to a wide range of environmental contaminants. This
study corroborates previous results showing that an amphipod-rich
diet is associated with a high Cd and Se intake, and low Hg exposure,
in small petrels. Feeding at low trophic levels surprisingly implied the
occurrence of a variety of OCPs and PBDEs in internal tissues, which
merits complementary studies on the contamination of Antarctic
prions' prey. Results of our work validate the use of blood as a good in-
dicator of internal tissue concentrations of As and Hg in small petrels.
The lack of correlations of Hg and other trace element concentration be-
tween feathers and soft tissues does not indicate that feathers are not
good indicators of internal contamination, but rather that the temporal
integration of contaminants into feathers must be carefully considered.
Further studies investigating feather and internal contaminant concen-
trations during moult are highly needed to understand the mechanism
of excretion, in particular for POPs.
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