Assessment of metal, metalloid, and radionuclide bioaccessibility from mussels to human consumers, using centrifugation and simulated digestion methods coupled with radiotracer techniques

Marc Metian \(^{a,b}\), Laetitia Charbonnier \(^{c}\), François Oberhaënsli \(^{a}\), Paco Bustamante \(^{b}\), Ross Jeffree \(^{a}\), Jean-Claude Amiard \(^{c}\), Michel Warnau \(^{a,\ast}\)

\(^{a}\) International Atomic Energy Agency, Marine Environment Laboratories (IAEA-MEL), Principality of Monaco
\(^{b}\) Littoral, Environnement et Sociétés (LIENSs), UMR 6250, CNRS-Université de La Rochelle, France
\(^{c}\) Nantes Atlantique Universités, Molécules Mer et Santé, EA2160, Université de Nantes, France

ABSTRACT

The dietary bioaccessibility of seven elements (\(^{241}\)Am, Cd, Co, Cs, Mn, Se, and Zn) in the Mediterranean mussels Mytilus galloprovincialis (Lamarck, 1819) was assessed for human consumers. In this respect, we assessed and compared the proportion of elements associated with the cellular cytosolic (“soluble”) fraction vs. the bioaccessible fraction derived, respectively, from (1) the differential centrifugation method and (2) the simulated digestion method. Comparisons were carried out on both raw and cooked mussels. Results showed that (1) the centrifugation method systematically underestimated (up to a factor 4) element bioaccessibility in raw mussels compared with the in vitro digestion method (e.g., 10\% vs. 42\% for \(^{241}\)Am), and (2) the cooking process (5 min at 200°C) leads to concentrating the elements in mussel tissues (e.g., by a factor 2 for Zn) and reducing their bioaccessibility. Overall, the simulated in vitro digestion method appears as a powerful tool for seafood safety assessment and cooking could contribute in reducing substantially the global trace element intake from mussel tissues (up to 65\% for Cd and Cs).

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Among seafood, bivalves generally display a high capacity in bioaccumulating metals, which suggests that the risk for their human consumers may not be negligible (e.g., Chouvelon et al., 2009; Metian et al., 2008). This risk depends primarily on the dietary bioavailable fraction of metal (viz., the fraction that is actually assimilated from the food and can reach the systemic circulation of an organism), which depends itself on the metal speciation within the seafood soft tissues. Before the 1990s, it was generally assumed that the bioavailable fraction was reliably assessed by the metal content of the cytosolic (“soluble”) fraction in the cells. Later on, studies on the bioavailability of metals focusing on the “insoluble” fraction of the cells showed that the use of the cytosolic fraction alone underestimated the fraction of the metals that was bioavailable to the higher trophic levels. Nowadays, it is considered that the metals contained in both cytosolic and organelles fractions better reflect the bioavailable fraction (Wallace and Lopez, 1996; Wallace and Luoma, 2003). More recently, simulated digestion methodologies were developed to provide a more realistic assessment of the dietary bioavailable fraction of contaminants (Oomen et al., 2003; Versantvoort et al., 2005; Amiard et al., 2008).

The objective of the present study was to assess the dietary bioaccessible fraction (viz., the fraction resulting from the digestive process that can potentially be assimilated by the organism) of selected elements from mussels to human consumers, using two different methods, i.e., differential centrifugation and in vitro simulated digestion. Both methods were coupled with highly sensitive radiotracer techniques using the corresponding \(\gamma\)-emitting radiotracers of the selected elements, i.e., four metals (Cd, Co, Cs, Mn, and Zn), one metalloid (Se) and one artificial radionuclide (\(^{241}\)Am). It is worth noting that \(\gamma\)-emitting radiotracers of Co and Cs are also radionuclides commonly associated with nuclear industry wastes and fallout from nuclear weapon testing. The present work also investigated the effect of...
It was also observed that although cooking increased the element concentration in the mussel flesh, the elements remaining in the cooked flesh were less bioaccessible than when occurring in raw tissues, in particular for Cd, Se, and Zn (Table 1).

4. Discussion

The results of our study show clearly that the bioaccessible fraction determined using the simulated in vitro digestion method was systematically higher (by a factor of up to 4) than when assessed using the differential centrifugation method (see Table 1). In particular, the latter method considerably underestimated the bioaccessibility of 241Am, Co, Mn, Se, and Zn. This observation was not that surprising as, from the theory, it was expected that the differential centrifugation method would provide a lower bioaccessibility estimate since it is only related to the cytosolic subcellular fraction (Wallace and Luoma, 2003). In contrast, by definition, the simulated in vitro digestion method would allow assessing the global metal fraction, which is bioaccessible, regardless of the subcellular partitioning of the elements. Using a simplified empirical digestion simulation (acetic acid solution at pH 4), Braggand et al. (2004) had already shown that some metals (Ag, Cd, Cu, and Zn) could be bioavailable from the insoluble subcellular fraction of oyster cells. The in vitro digestion previously developed by Oomen et al. (2003) and Versantvoort et al. (2005) and used in the present study is a step forward to evaluate the bioaccessibility of metals from seafood products by humans as it mimics quite closely the conditions occurring all along the human digestive tract (constant temperature, succession of enzymatic activities and pH, concerning to each digestive step occurring from the mouth to the intestine).

The analysis of radiotracer content in raw and cooked mussels demonstrated that the cooking process resulted in concentrating by 20–70% most of the studied elements due to the loss of moisture as well as in releasing metals into the cooking juice. In particular, the cooking juice displayed metal concentrations higher by up to one order of magnitude than in the inter-valve fluid of raw mussels (see Table 2), corresponding to similar differences in terms of metal load (both cooking juice and inter-valve fluid were of similar volume).

Nevertheless, the comparison of our data with those previously published showed that a trend can hardly be generalized regarding the cooking effect on the metal content in seafood. Indeed, while some elements were found to concentrate in seafood after cooking (e.g., total and inorganic As in fish and molluscs; Devesa et al., 2001), other elements were not (e.g., Cd, Cu, Pb, and Zn in the fish Tilapia nilotica; Atta et al., 1997). Furthermore, the element concentration in tissues after cooking appears to depend on (1) the species considered (e.g., 134Cs is not concentrated in cooked mussel tissues whereas it is in fish tissues; present study and Burger et al., 2004, respectively), (2) the element considered and its chemical speciation (Devesa et al., 2001), and (3) the type of cooking (Ersoy et al., 2006). Although the aforementioned factors are generally reported as influencing the cooking effect, it has to be noted that the species-dependence factor could be partly due to the difference in tissue consideration when different species are investigated. Indeed, studies dealing with bivalves as ours generally consider the whole soft tissues as edible target, whereas fish-related studies generally consider only the muscle tissues (fillet). Therefore, differences in the nature of the tissues (e.g., protein composition and moisture content) and in metal interactions with the cellular components in different tissues could lead to contrasting results. This is particularly true when storage organs such as liver/hepatopancreas or kidneys are considered. Indeed these organs are the main sites where
detoxification processes take place, which usually result in an increase of excretion capacity or, more generally, in an increase in sequestration capacity and thus in different binding strength of the metals with cellular components (e.g., Metian et al., 2005).

Finally, although cooking resulted in an increase in element concentration in whole mussel flesh, it also appeared that the elements remaining in the cooked flesh were significantly less bioaccessible than those occurring in the raw tissues. This was particularly obvious for Cd, Se, and Zn (see Table 1).

Considering the simulated in vitro digestion method and taking into account all the parameters (i.e., change in weight and in metal concentration of the cooked flesh, change in bioaccessible fraction), we have assessed that the metal intake for a consumer eating mussels would be reduced by 25% for Mn, 35% for Zn, 40% for Co, 50% for Se, and 65% for Cd and 134Cs if the mussels are previously cooked and the cooking juice discarded before consumption. This decrease in metal intake would be even more important if the bioaccessibility assessed via the subcellular fractioning method was considered (as the decrease in bioaccessibility between raw and cooked muscles was more marked). However, the information provided by the latter method is probably not directly comparable between raw and cooked muscles. Indeed, cooking of the flesh results in changes/damages of the cellular structure (e.g., protein agglutination), which will affect substantially the cytosol (in both its nature and occurrence) as well as the results of a centrifugation approach and their meaning. Hence, the use of the centrifugation fractioning method is most probably relevant and informative only when the raw product is considered.

5. Conclusion

The simulated in vitro digestion method represents a powerful tool for the safety assessment of commercially important seafood products. Our study indicates that the bioaccessible fraction of metals in mussel soft tissues for human consumers depends on the metal chemical properties (e.g., distribution among cellular components and binding properties) and on the preparation of this seafood (in the present case, raw vs. cooked at 200°C for 5 min). The present work also showed that the cooking process generally concentrated the elements in mussel soft tissues, decreased their bioaccessibility for the consumers and released a significant part of the elements into the cooking juice. Results indicated that, providing the cooking juice is discarded, consumption of cooked mussels can contribute in reducing significantly the global intake of trace elements from seafood in humans (by as much as 65% for Cd and 134Cs). Further studies are required on seafood containing norm-exceeding levels of trace elements in order to assess whether the risk for consumers could be decreased in cooked products down to levels allowing safe marketing. This could be of particular interest in the case of Cd for which the maximum concentration allowed in marketed bivalves is low (1 μg g⁻¹ wet wt; EC, 2006).

Acknowledgments

Michel Warnau is an Honorary Senior Research Associate of the National Fund for Scientific Research (NFSR, Belgium) and holds a 2008 Invited Expert position at LIENSs (CNRS-Université de La Rochelle), supported by the Conseil Régional de Poitou-Charente. The work described in the manuscript was supported by the IAEA-MEL regular budget and a GIP Seine-Aval PhD grant awarded to Marc Metian. The IAEA is grateful for the support provided to its Marine Environment Laboratories by the Government of the Principality of Monaco. Authors are grateful to three anonymous reviewers for constructive comments on the manuscript. Funding sources that supported the work described in the manuscript were from the IAEA-MEL regular budget.

References

Table 1
Radiotracer bioaccessibility (%; mean ± SD, n = 8) from mussel soft tissues (raw or cooked) to human consumers, assessed using either the differential centrifugation fractioning method or the simulated in vitro digestion method.

<table>
<thead>
<tr>
<th>Mussel preparation</th>
<th>Method for assessing bioaccessibility</th>
<th>54Mn</th>
<th>60Co</th>
<th>65Zn</th>
<th>75Se</th>
<th>109Cd</th>
<th>134Cs</th>
<th>241Am</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw</td>
<td>Fractioning</td>
<td>36±6</td>
<td>37±4</td>
<td>38±4</td>
<td>65±3</td>
<td>77±3</td>
<td>82±6</td>
<td>10±3</td>
</tr>
<tr>
<td></td>
<td>Digestion</td>
<td>79±13</td>
<td>79±10</td>
<td>70±5</td>
<td>85±3</td>
<td>72±4</td>
<td>92±1</td>
<td>42±13</td>
</tr>
<tr>
<td>Cooked</td>
<td>Fractioning</td>
<td>17±5</td>
<td>17±3</td>
<td>3±1</td>
<td>39±2</td>
<td>20±3</td>
<td>59±21</td>
<td>2±1</td>
</tr>
<tr>
<td></td>
<td>Digestion</td>
<td>82±2</td>
<td>68±7</td>
<td>47±12</td>
<td>63±5</td>
<td>34±9</td>
<td>80±8</td>
<td>52±8</td>
</tr>
</tbody>
</table>

Table 2
Radiotracer activity (Bq g⁻¹ wet wt; mean ± SD, n = 8) in mussel soft tissues and fluid before and after cooking.

<table>
<thead>
<tr>
<th>Mussel preparation</th>
<th>Compartments</th>
<th>Weight (g wet wt)</th>
<th>54Mn</th>
<th>60Co</th>
<th>65Zn</th>
<th>75Se</th>
<th>109Cd</th>
<th>134Cs</th>
<th>241Am</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw</td>
<td>Soft tissues</td>
<td>2.4±0.7</td>
<td>41±10</td>
<td>34±9</td>
<td>379±74</td>
<td>73±27</td>
<td>366±64</td>
<td>4±0.6</td>
<td>11±2</td>
</tr>
<tr>
<td></td>
<td>Fluid</td>
<td>5.4±1.9</td>
<td>13±7</td>
<td>7±4</td>
<td>60±26</td>
<td>23±5</td>
<td>30±13</td>
<td>3±0.7</td>
<td>3±2</td>
</tr>
<tr>
<td>Cooked</td>
<td>Soft tissues</td>
<td>1.3±0.5</td>
<td>54±21</td>
<td>42±17</td>
<td>648±152</td>
<td>86±34</td>
<td>450±133</td>
<td>3±0.6</td>
<td>15±5</td>
</tr>
<tr>
<td></td>
<td>Fluid</td>
<td>4.1±1.3</td>
<td>75±49</td>
<td>32±13</td>
<td>74±17</td>
<td>74±22</td>
<td>322±87</td>
<td>6±1</td>
<td>2±2</td>
</tr>
</tbody>
</table>

Fluid: inter-valve fluid (in raw mussels) or cooking juice (in cooked mussels).

