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INTRODUCTION

A fundamental requirement to understand the struc-
ture and functioning of marine ecosystems is the know -
ledge of trophodynamics or trophic linkages among
species of these ecosystems (Cury et al. 2003). More-
over, the definition of species trophic level is a key as-
pect of many ecosystem models, providing a valuable
indicator to assess trophic structure and ecosystem
changes, e.g. due to overfishing (Gascuel et al. 2005).

Until recently, the traditional method for investigat-
ing diet and trophic level of organisms was the study of
stomach or gut contents. Such a method allows a pre-

cise taxonomic description of the prey consumed and
of their size range. However, it also requires a lot of
time, it may be skewed by the differential digestion of
the different prey, and it only represents the food
ingested (and not assimilated) in the short-term (Hob-
son & Wassenaar 1999, Santos et al. 2001). Therefore,
the use of tracers has dramatically increased in trophic
ecology in the last decades (e.g. Lahaye et al. 2005,
Michener & Kaufman 2007). Such tracers, which are
generally chemical parameters, encompass stable iso-
tope ratios of carbon and nitrogen (δ13C and δ15N),
lipids, or some trace elements (either stable or radioac-
tive). These tracers are investigated in biological tis-
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sues of consumers to complement traditional methods
of dietary studies (Hobson & Wassenaar 1999).

Stable isotopes of carbon are often used as an indica-
tor of the feeding zone or habitat, since ratios vary lit-
tle between those of the primary producers of the local
food chain or a prey and those of the consumers (≤1‰)
(De Niro & Epstein 1978, Hobson 1999). Moreover, in
the marine environment, pelagic and/or oceanic pri-
mary producers are generally depleted in 13C com-
pared to those in benthic and/or neritic environments,
discriminating the pelagic vs. benthic or inshore vs.
offshore contribution to food intake (France 1995,
Sherwood & Rose 2005). In contrast, consumers are
enriched in 15N relative to their food (between 2.5 and
5‰) (De Niro & Epstein 1981, Vanderklift & Ponsard
2003), so stable isotopes of nitrogen are generally used
as an indicator of the trophic level (Hobson & Welch
1992).

Trace metals such as cadmium (Cd) and mercury
(Hg) are released in the environment from both natural
and anthropogenic sources (e.g. zinc ore for Cd, vol-
canism and waste incineration for Hg). They reach the
ocean through river inputs and atmospheric deposi-
tions (Cossa & Lassus 1989, Cossa et al. 1990). Trophic
transfer is then the main pathway for the intake of both
Cd and Hg, and these metals bioaccumulate in higher
trophic level consumers (Eisler 1987, Cossa et al. 1990,
Koyama et al. 2000, Lahaye et al. 2005). Thus, these
non-essential elements may also be potential tracers of
the habitat or of the feeding zone of consumers. In the
case of Hg, its bioaccumulation is enhanced in biota
from mesopelagic environments (Monteiro et al. 1996,
Thompson et al. 1998). Seabirds feeding on meso -
pelagic fish thus exhibit higher Hg concentrations in
their feathers than epipelagic feeders (Thompson et
al. 1998, Ochoa-Acuña et al. 2002). Furthermore, Hg
could represent a potential indicator of the trophic
level, given its known biomagnification within food
webs (Eisler 1987, Cossa et al. 1990). Cd shows en -
hanced bioaccumulation in various phyla (i.e. crus-
taceans, molluscs and vertebrates) from various marine
environments (Bargagli et al. 1996, Bustamante et al.
1998, 2004, Zauke et al. 1999). In this way, cephalo -
pods constitute a vector of Cd for their predators such
as seabirds and marine mammals (Caurant & Amiard-
Triquet 1995, Bustamante et al. 1998, Lahaye et al.
2005). Thus, Cd concentrations in short-beaked com-
mon dolphin Delphinus delphis identified long-term
segregation between oceanic and neritic dolphin pop-
ulations in the Bay of Biscay (Lahaye et al. 2005).

The signature (stable isotopes) or bioaccumulation
(metals) of ecological tracers in a consumer’s tissues
greatly depends on its diet. The use of these chemical
parameters as tracers in predators thus relies on a good
knowledge of the factors influencing the values in

prey, such as spatio-temporal variations, the chemical
form of metals, or biological factors such as sex, species
or taxa, or even those linked to ontogeny (age, growth,
dietary shifts) (Vanderklift & Ponsard 2003, Lahaye et
al. 2005, Perga & Gerdeaux 2005). In this respect, onto-
genic effects have been poorly and especially un -
equally treated as a function of the potential tracers
 presented above. While Hg is well-known to bio -
accumulate in muscle tissue with size or age in various
taxa (Cossa et al. 1990, Rossi et al. 1993), Cd bioaccu-
mulation patterns with age are less well-established
and seem to differ between tissues, species, and (Cossa
& Lassus 1989, Cronin et al. 1998, Miramand et al.
2006, Pierce et al. 2008). Finally, studies on ontogenic
effects on stable isotope ratios in marine organisms are
relatively scarce and mainly concern fish (Jennings et
al. 2001, Perga & Gerdeaux 2005). The question of
ontogenic changes on all these tracers has thus far
been poorly treated in cephalopods. Such a considera-
tion is very important as cephalopods are both active
predators and prey, and thus constitute an important
link within food webs (Piatkowski et al. 2001).

To study the feeding ecology of cephalopods, the use
of tracers such as stable isotope ratios is particularly
suitable (Cherel & Hobson 2005, Ruiz-Cooley et al.
2006, Parry 2008), notably because prey identification
from the gut is often difficult (Jackson et al. 2007). In
addition, these voracious predators can accumulate
high metal concentrations in their tissues, especially in
the digestive gland (Martin & Flegal 1975, Miramand
& Bentley 1992). Food is generally considered as a
major source for several metals in cephalopods, espe-
cially for Cd and Hg (Koyama et al. 2000, Bustamante
et al. 2002a, Lacoue-Labarthe et al. 2009). Finally, as
prey, cephalopods can transfer these metals to their
predators, as described previously in the case of Cd in
the Northeast Atlantic Ocean (Caurant & Amiard-Tri-
quet 1995, Bustamante et al. 1998, Lahaye et al. 2005).

In this context, the aim of the present study was to
assess the effects of ontogenic changes on (1) stable
isotope ratios (δ13C, δ15N) and (2) Cd and Hg bioaccu-
mulation in several species of cephalopods from a
same area, to assess the extent to which these onto-
genic changes may affect the use of these tracers as
feeding ecology indicators in community or ecosystem-
scale studies of cephalopods.

MATERIALS AND METHODS

Study area, sampling strategy and sample prepara-
tion. The Bay of Biscay (from 1 to 10° W and from 43 to
48° N) is a very large bay open to the Northeast
Atlantic Ocean, with a vast continental shelf in its
northern part (60 to 100 nautical miles wide), which is

108



Chouvelon et al.: Inter-specific and ontogenic differences in δ13C, δ15N, Hg, Cd

reduced to only a few miles in its southern part (Fig. 1).
We focused on 5 species of cephalopods that were
caught in various habitats (inshore vs. offshore waters,
pelagic vs. benthic or demersal domains): 3 squid spe-
cies, the veined squid Loligo forbesi, the European
squid L. vulgaris, and the European flying squid
Todarodes sagittatus; 1 cuttlefish species, the common
cuttlefish Sepia officinalis; and 1 octopus species, the
horned octopus Eledone cirrhosa.

Loligo forbesi and L. vulgaris are benthopelagic spe-
cies mainly feeding on fish and to a smaller extent on
crustaceans, polychaetes, or other cephalopods (Roper
et al. 1984, Guerra & Rocha 1994, Pierce et al. 1994).
However, they differ in their distribution: L. forbesi is
usually found in depths ranging from 100 to 400 m,
whereas L. vulgaris generally occurs in depths shal-
lower than 250 m (Roper et al. 1984, Lordan et al.
2001a). Todarodes sagittatus is a more oceanic species
that is generally trawled beyond 200 m depth and may
occur as deep as 1000 m. It is also mainly piscivorous
(Roper et al. 1984, Lordan et al. 2001a,b). Sepia offici-
nalis is a demersal and neritic species inhabiting
waters from coastline to about 200 m depth but is most

abundant in the upper 100 m. Its diet
is generally  composed of small mol-
luscs, crabs, shrimps, other cephalo -
pods and juvenile demersal fish
(Roper et al. 1984). Finally, Eledone
cirrhosa is a benthic species that may
occur as deep as 500 m, but mostly
occurs between 60 and 150 m, and
feeds  primarily on crustaceans such as
shrimps, crabs, and lobsters (Roper et
al. 1984, Lordan et al. 2001a).

Overall, 147 individuals were col-
lected during the EVHOE groundfish
surveys conducted by the Institut
Français de Recherche pour l’Ex-
ploitation de la Mer (IFREMER) from
the continental shelf to the shelf-edge
of the Bay of Biscay in the autumns of
2005 to 2008. Specimens were frozen
at –20°C on board and then stored at
the laboratory until dissection, during
which each organism was weighed
and measured (dorsal mantle length,
DML) and a piece of mantle muscle
and the whole digestive gland
were removed. Characteristics (DML,
weight, sex and average trawling
depths) of the individuals are given in
Table 1. After dissection, the samples
were immediately placed in individ-
ual plastic bags, frozen again at –20°C
and freeze-dried. Freeze-dried tissues

were ground into a fine powder and stored in individ-
ual plastic vials until further analyses.

To assess ontogenic effects on δ13C and δ15N values
and metal bioaccumulation in cephalopods, the 3 spe-
cies presenting the widest size ranges were selected,
i.e. Loligo vulgaris, L. forbesi and Sepia officinalis.
Indeed, DML and age (or the number of increments on
statoliths) are closely related in Loligo spp. and S. of -
ficinalis, despite some inter-individual variability in
growth rates depending on hatching season (Rocha &
Guerra 1999, Challier et al. 2002). Therefore, in the
present study we assumed that several age classes
were considered within the 3 species selected for onto-
genic analyses. Also, juveniles with no visible distinct
gonads were separated from males and females with
known sex (immatures and matures considered
together) because these species present a strong sex-
ual dimorphism (Roper et al. 1984, Rocha & Guerra
1999). Juveniles, males, and females were compared
as a 3 component categorical factor called ‘sex’.

Isotopic analyses. Stable isotopes of carbon and
nitrogen were analyzed in the mantle muscle, which is
the tissue of reference in food web studies inferred
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Fig. 1. Study area and sampling locations of cephalopod species (Eledone cir-
rhosa, Loligo vulgaris, L. forbesi, Sepia officinalis, Todarodes sagittatus) in the 

Bay of Biscay
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from stable isotope analyses (Hobson & Welch 1992,
Pinnegar & Polunin 1999). The use of mantle muscle
allows comparisons of isotopic signatures between
individuals and taxa, minimizing inter-tissue differ-
ences in terms of biochemical and physiological prop-
erties like protein turnover rate and metabolic routing
(Cherel et al. 2009).

Because lipids are highly depleted in 13C relative to
other tissue components (De Niro & Epstein 1977), they
were extracted from muscle samples using cyclo-
hexane. To accomplish this, an aliquot of approxi-
mately 100 mg of fine powder was agitated with 4 ml of
cyclohexane for 1 h. Next, the sample was centrifuged
for 5 min at 4000 × g, and the supernatant containing
lipids was discarded. Then, the sample was dried in an
oven at 45°C for 48 h, and 0.35 ± 0.05 mg subsamples
of lipid-free powder were weighed in tin cups for sta-
ble isotope analyses. These analyses were performed
with an elemental analyser coupled to an Isoprime
(Micromass) continuous-flow isotope-ratio mass spec-
trometer (CF IR-MS). The results are presented in the
usual δ notation relative to the deviation from stan-
dards (Pee Dee Belemnite for δ13C and atmospheric
nitrogen for δ15N), in parts per thousand (‰). Based on
replicate measurements of internal laboratory stan-
dards, experimental precision is of ±0.15 and ±0.20‰
for δ13C and δ15N, respectively.

Metal analyses. Total Hg analyses were conducted
on the mantle muscle of all species, while Cd was
analysed in the digestive gland. Hg is known to mainly
accumulate in its organic form in the muscle tissue of
cephalopods (Bustamante et al. 2006), whereas the role
of the digestive gland in the storage and detoxification
of Hg in cephalopods is not well defined (Bustamante
et al. 2006, Pierce et al. 2008, Lacoue-Labarthe et al.

2009). In contrast, the digestive gland is well recog-
nized as the key organ in bioaccumulation and detoxi-
fication of Cd in cephalopods (Miramand & Bentley
1992, Bustamante et al. 2002a, Pierce et al. 2008).

Hg analyses were carried out with an Advanced
Mercury Analyser (ALTEC AMA 254) as described in
Bustamante et al. (2006) on at least 2 homogenized dry
muscle tissue subsamples for each individual. Hg
analyses were run according to a thorough quality con-
trol program including the analysis of a certified refer-
ence material (CRM) TORT-2 (lobster hepatopancreas;
National Research Council, Canada [NRCC]). CRM
ali quots were treated and analysed in the same condi-
tions as the samples. CRM results were in good agree-
ment with the certified values, with an average recov-
ery rate of 97%. The detection limit was 5 ng g–1 dry
weight (dry wt). All Hg concentrations in tissues re -
ported below are expressed in ng g–1 dry wt.

Cd analyses were performed by inductively coupled
plasma optical emission spectroscopy as described in
Hédouin et al. (2009) for 2 subsamples of each diges-
tive gland. Blanks and CRM samples were treated and
analysed in the same way as the cephalopod samples.
The CRMs were dogfish liver DOLT-3 (NRCC) and
lobster hepatopancreas TORT-2 (NRCC). CRM results
were in good agreement with the certified values
with an average recovery rate of 92 and 98% for
DOLT-3 and TORT-2, respectively. The detection limit
was 0.15 µg g–1 dry wt. All Cd concentrations given
below are expressed in µg g–1 dry wt.

Data treatment. We first analyzed the relationships
between the potential tracers (muscle δ13C and δ15N
values, muscle Hg concentrations, and digestive
gland Cd concentrations), with regard to cephalopod
trawling depths and DML using a principal compo-
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Family Species N Trawling Sex DML TW Muscle Muscle Muscle Hg Digestive gland Cd

depth (m) (mm) (g) δ13C (‰) δ15N (‰) (ng g–1 dry wt) (µg g–1 dry wt)

Loliginidae Loligo 28 32 ± 14 16 M, 6 F, 73, 290 13, 562 –16.4 ± 0.5 14.5 ± 1.0 142 ± 40 5.2 ± 2.6

vulgaris (25, 58) 6 J (–17.5, –15.6) (12.1, 15.4) (65, 200) (2.3, 17.2)

Loligo 50 171 ± 100 21 M, 9 F, 39, 490 4, 1585 –17.8 ± 0.4 12.5 ± 0.7 188 ± 126 6.2 ± 2.8

forbesi (96, 492) 20 J (–18.9, –16.5) (11.3, 14.4) (47, 547) (1.3, 12.0)

Omma- Todarodes 17 449 ± 99 1 M, 16 F 195, 305 150, 627 –17.7 ± 0.5 12.2 ± 0.8 248 ± 68 18.6 ± 12.0

strephidae sagittatus (92, 536) (–18.7, –17.1) (10.7, 13.4) (139, 394) (7.7, 45.8)

Sepiidae Sepia 30 32 ± 12 14 M, 10 F, 48, 235 14, 1436 –16.4 ± 0.3 13.2 ± 0.7 201 ± 72 9.6 ± 9.4

officinalis (25, 66) 6 J (–17.0, –15.8) (12.2, 14.8) (83, 380) (2.5, 44.7)

Octopodidae Eledone 22 136 ± 54 12 M, 8 F, 64, 123 97, 653 –16.7 ± 0.5 11.8 ± 0.3 340 ± 72 16.3 ± 9.6

cirrhosa (43, 337) 2 J (–17.8, –16.0) (11.1, 12.3) (222, 561) (6.1, 40.0)

Table 1. Loligo vulgaris, L. forbesi, Todarodes sagittatus, Sepia officinalis and Eledone cirrhosa. Characteristics of individuals
(N = sample size for each species), muscle stable isotope values, muscle Hg, and digestive gland Cd concentrations for 5 species of
cephalopods from the Bay of Biscay. Values are means ± SD with ranges (minimum, maximum) for trawling depths and chemical
 parameter   values, and ranges only for DML and TW. DML: dorsal mantle length; TW: total weight; M: males; F: females; J: juveniles

(i.e. small individuals with no visible distinct gonads)
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nent analysis (PCA). The PCA was based on the cor-
relation matrix and normalised data for each variable
(i. e. centred and divided by the standard deviation).
Then, all data submitted to statistical tests (or residu-
als in the case of analysis of variance, ANOVA) were
checked for normality (Shapiro-Wilks test) and for
homogeneity of variances (Bartlett’s test). When these
conditions were fulfilled, parametric tests were used
in the subsequent analyses; otherwise, non-paramet-
ric analogues were used. Thus, a Kruskal-Wallis (KW)
test followed by a multiple comparison test with
Holm’s adjustment method was performed to test
inter-specific differences in muscle δ13C and δ15N val-
ues. For each of the 3 species selected for ontogenic
analyses (Loligo vulgaris, L. forbesi and Sepia offici-
nalis), the Pearson or Spearman correlation coefficient
test was used to analyze the correlation between δ15N
values and DML, between log-transformed muscle Hg
concentrations and DML or δ15N values, and between
log-transformed digestive gland Cd concentrations
and DML or δ15N values. On scatterplots of statis -
tically significant relationships, a smoother LOWESS
(locally weighted polynomial regression) was added
to help interpretation of correlation coefficients.
Finally, 1-way ANOVAs were performed to test
between-sex differences in δ15N values, muscle Hg
concentrations, and digestive gland Cd concentrations
in the same 3 species (ANOVA or KW test, followed
by Tukey’s HSD test in the case of ANOVA or a multi-
ple comparison test with Holm’s adjustment method
in the case of KW). The level of significance for statis-
tical analyses was always set at α = 0.05. All statistical
analyses were performed using the free software R
(R Development Core Team 2010).

RESULTS

Inter-specific differences

The first 2 principal components accounted for 68%
of the total variation present in the dataset (39 and
29% for axis 1 and 2, respectively). Depth and stable
isotope values were the variables that contributed most
to the first axis, whereas muscle Hg concentrations and
DML contributed most to the second axis (i.e. contribu-
tion of the variable ≥25%; Fig. 2). Principal component
1 indicated that increased digestive gland Cd concen-
trations were associated with important trawling
depths but with low δ13C and δ15N values (Fig. 2). Nev-
ertheless, Cd concentrations in the digestive gland
contributed more to the formation of the third axis, not
represented here (contribution of 39%). Principal com-
ponent 2 showed that increased muscle Hg concentra-
tions are highly correlated with DML (Fig. 2). Finally,

when individuals were grouped by species or by sex, it
emerged that species were more segregated by princi-
pal component 1 (i.e. by muscle δ13C and δ15N values
and to a lesser extent digestive gland Cd concentra-
tions), while juveniles strongly differed from adults in
their muscle Hg concentrations on principal compo-
nent 2 (males and females generally not segregated)
(Fig. 2).

Regarding inter-specific differences in carbon and
nitrogen measurements in particular (Fig. 3), the 5 spe-
cies of cephalopods from the Bay of Biscay differed sig-
nificantly by both their average δ13C (pKW < 0.001) and
δ15N values (pKW < 0.001). Post hoc multiple compari-
son test showed that Loligo forbesi and Todarodes
sagittatus had significantly lower δ13C values (p < 0.05)
than L. vulgaris, Sepia officinalis and Eledone cirrhosa
(Table 1, Fig. 3). As for nitrogen, T. sagittatus and L.
forbesi (more oceanic species) did not differ signifi-
cantly (p > 0.05), whereas L. vulgaris, S. officinalis and
E. cirrhosa (neritic species) presented significantly dif-
ferent δ15N values (p < 0.05) (Table 1, Fig. 3).

Ontogenic effects in Loligo vulgaris, L. forbesi
and Sepia officinalis

Ontogenic effects on stable isotope ratios

As a positive correlation between δ13C and δ15N val-
ues was evidenced by the PCA (Fig. 2), correlation
coefficient tests between stable isotope values and
DML were only performed on δ15N values to avoid
redundant analyses and figures.

In Loligo vulgaris, the correlation coefficient was low
between δ15N values and DML (R2

Spearman = 0.233, p =
0.010), reflecting the non-linear relationship existing
between both variables (Fig. 4a). Indeed, δ15N values
were very similar for individuals larger than approxi-
mately 100 mm DML, corresponding to adult individu-
als that could be sexed, and strongly differed from
juvenile ones (Table 2).

In Loligo forbesi, there was a positive correlation
between δ15N values and DML (R2

Pearson = 0.439, p <
0.001), but variability between similar-sized individu-
als was high (Fig. 4b). There was no significant differ-
ence in δ15N values between juveniles and females,
but both were significantly different from males
(Table 2). This contributed to the increase in δ15N val-
ues with increasing size, as males are considerably
larger than females in this species (Fig. 4b).

In Sepia officinalis, there was also a positive relation-
ship between δ15N values and DML, but the correlation
coefficient was lower (R2

Pearson = 0.273, p = 0.003); δ15N
values varied greatly between similar-sized individu-
als at all stages (Fig. 4c).
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Ontogenic effects on metal bioaccumulation

In the 3 species, log-transformed Hg concentrations
in the muscle were strongly and positively correlated
with DML (R2

Spearman = 0.600, R2
Spearman = 0.836, and

R2
Pearson = 0.596, in Loligo vulgaris, L. forbesi and

Sepia officinalis, respectively; all p < 0.001) (Fig. 5).
Hg concentrations in the muscle and δ15N values
were also correlated (R2

Spearman = 0.361, R2
Spearman =

0.404 in L. vulgaris and L. forbesi, respectively, both
p < 0.001; R2

Pearson = 0.182 in S. officinalis, p = 0.019)
(Fig. 5).
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Fig. 2. Eledone cirrhosa, Loligo vulgaris, L. forbesi, Sepia officinalis and Todarodes sagittatus. Projection of variables (Cd_DG:
Cd in digestive gland; Hg_M: Hg in muscle; ML: mantle length) and individuals on the first 2 components resulting from the prin-
cipal component analysis (PCA). (a) Correlation biplot showing the distribution of the variables. The length of the line for a vari-
able shows how well it is represented by the 2-dimensional approximation, and reflects its contribution to the first 2 principal
components. Horizontal axis: principal component 1 (eigenvalue = 2.3, that is 39% of the variability explained by axis 1); vertical
axis: principal component 2 (eigenvalue = 1.8, that is 29% of the variability explained by axis 2). Variables pointing in the same
direction display a high positive correlation. Variables pointing in the opposite direction have a high negative correlation. Vari-
ables with an angle of 90° have a small correlation close to 0. (b) Projection of individuals on the correlation biplot, and histogram
of eigenvalues of the different components resulting from the PCA. The black shaded bars refer to the first 2 components with
higher eigenvalues, represented on the correlation biplot. The grey shaded bars refer to the other components. Eigenvalues = 2.3,
1.8, 1.1, 0.4, 0.3, 0.1 for the components resulting from the PCA, from 1 to 6 respectively. (c) Grouping of individuals by species.

(d) Grouping of individuals by sex (juveniles: small individuals with no visible distinct gonads)
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In the 3 species, adults significantly differed from
juveniles in their muscle Hg concentrations (Table 2).
Among adults, average Hg concentrations were signif-
icantly different between males and females for Loligo
vulgaris and L. forbesi but not for Sepia officinalis
(Table 2).

Regarding Cd, there was a significant negative cor-
relation between log-transformed concentrations and
DML on the one hand (R2

Spearman = 0.416, p < 0.001),
and between log-transformed Cd concentrations and
δ15N values on the other hand (R2

Pearson = 0.253, p <
0.001), in Loligo forbesi only (Fig. 6). In fact, males
(comprising larger individuals with the highest δ15N
values) significantly differed from juveniles and
females (Table 2, Fig. 6). No significant correlation was
found between log-transformed digestive gland Cd
concentrations and DML or δ15N values, neither were
differences found between sexes in L. vulgaris and
Sepia officinalis (Fig. 6, Table 2).

DISCUSSION

Inter-specific differences in trophic ecology and
metal bioaccumulation

From a community point of view, isotopic signatures
(carbon and nitrogen combined) were the chemical
parameters that best segregated 5 cephalopod species
from the Bay of Biscay (Figs. 2 & 3). Four distinct iso-

topic niches (as described by Newsome et al. 2007)
emerged, with Loligo forbesi and Todarodes sagittatus
sharing the same isotopic niche (Fig. 3). The different
isotopic niches suggest clear segregations in terms of
trophic ecology, and these results agree with what is
currently known about the spatial distribution and
feeding habits of the 5 species. Indeed, L. forbesi and
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Fig. 3. Loligo vulgaris, L. forbesi, Sepia officinalis, Todarodes
sagittatus and Eledone cirrhosa. Muscle δ13C and δ15N values
(‰) of 5 species of cephalopods from the Bay of Biscay. Spe-
cies not sharing the same numbers (δ13C) and letters (δ15N)
are significantly different (δ13C: Kruskal-Wallis χ2 = 97.5, df =
4, p < 0.001; δ15N: Kruskal-Wallis χ2 = 80.9, df = 4, p < 0.001).

Values are means ± SD. TP = Trophic position

Fig. 4. Loligo vulgaris, L. forbesi and Sepia officinalis. Rela-
tionships between muscle δ15N values and dorsal mantle
length (DML) in (a) Loligo vulgaris, (b) L. forbesi, and (c)
Sepia officinalis; individuals are separated by sex and by
year. Squares = males; triangles = females; circles = juveniles;
black = 2008; white = 2006. Smoothing lines (robust, locally
weighted scatterplot smoothing system based on the
LOWESS algorithm with the software R) represent the fitted
non-linear trend of the values when the correlation coefficient

test is significant
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T. sagittatus generally show a more offshore distribu-
tion that fit well with their low δ13C values relative to L.
vulgaris and Sepia officinalis (Roper et al. 1984, Lordan
et al. 2001a). The enriched δ13C values of Eledone cir-
rhosa may be explained by the benthic habitat of this
octopus, where baseline δ13C values are higher than in
pelagic ecosystems (France 1995). Muscle δ15N values
increased with the probability of a species to feed more
on fish than on pelagic or benthic crustaceans in the
neritic species, with L. vulgaris > S. officinalis > E. cir-
rhosa (Roper et al. 1984, Pierce et al. 1994, Pinczon du
Sel et al. 2000, Neves et al. 2009). This is in accordance
with δ15N values of the potential prey available for the
Bay of Biscay. Small pelagic crustaceans such as the
euphausid Meganyctiphanes norvegica or those con-
stituting zooplankton (e.g. other euphausids, cope-
pods, mysids) present considerably lower δ15N values
than small pelagic fish in the Bay of Biscay (between 2
and 5‰ difference in average) (authors’ unpubl. data).
Moreover, while benthic crustaceans should present

higher δ15N values due to their scavenger behaviour,
they actually also exhibit lower average δ15N values
(about 1‰) compared to those of small pelagic or dem-
ersal coastal fish such as Gobiidae, Callyonimidae,
Ammodytidae or Atherinidae in the Bay of Biscay (Le
Loc’h et al. 2008, authors’ unpubl. data). Loligo vul-
garis, and to lesser extent S. officinalis, consume those
kind of fish (Pierce et al. 1994, Pinczon du Sel et al.
2000), and thus exhibit higher δ15N values than the
benthic crustacean feeder E. cirrhosa (Roper el al.
1984).

Concerning metals, average Hg concentrations in
the muscle tissue varied over the same order of magni-
tude in the 5 species (Table 1) and did not contribute
significantly to the segregation of the species in the
PCA (Fig. 2). In contrast to Hg, average Cd concentra-
tions in the digestive gland varied over different orders
of magnitude between species (Table 1). Cd concen-
trations tend to increase with the proportion of benthic
crustaceans compared to fish in the diet of the neritic
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Species Sex N Mean ± SD Range Test and characteristics Group

Muscle δ15N (‰)
Loligo vulgaris Juveniles 6 12.8 ± 0.5 12.1, 13.5 1-way ANOVA (+ Tukey’s test) a

Females 6 15.0 ± 0.2 14.7, 15.3 F = 130.7, df = 2 b
Males 16 15.0 ± 0.2 14.6, 15.4 p < 0.001 b

Loligo forbesi Juveniles 20 12.1 ± 0.5 11.3, 13.1 1-way ANOVA (+ Tukey’s test) a
Females 9 12.3 ± 0.6 11.4, 13.6 F = 14.8, df = 2 a
Males 21 13.1 ± 0.6 12.2, 14.4 p < 0.001 b

Sepia officinalis Juveniles 6 12.7 ± 0.4 12.3, 13.4 1-way ANOVA (+ Tukey’s test) a
Females 10 13.2 ± 0.6 12.2, 14.1 F = 3.6, df = 2 a, b
Males 14 13.5 ± 0.7 12.6, 14.8 p = 0.041 b

Muscle Hg (ng g–1 dry wt)
Loligo vulgaris Juveniles 6 83 ± 18 65, 113 KW + MPC tests (Holm’s) a

Females 6 161 ± 14 136, 173 χ2 = 12.2, df = 2 b
Males 16 156 ± 31 81, 200 p = 0.002 c

Loligo forbesi Juveniles 20 84 ± 20 47, 142 KW + MPC tests (Holm’s) a
Females 9 199 ± 68 99, 302 χ2 = 34.7, df = 2 b
Males 21 282 ± 128 109, 547 p < 0.001 c

Sepia officinalis Juveniles 6 124 ± 34 83, 169 1-way ANOVA (+ Tukey’s test) a
Females 10 238 ± 82 126, 380 F = 6.7, df = 2 b
Males 14 209 ± 52 108, 290 p = 0.004 b

Digestive gland Cd (µg g–1 dry wt)
Loligo vulgaris Juveniles 6 4.4 ±1.0 3.5, 6.0 KW + MPC tests (Holm’s) a

Females 6 4.8 ± 1.2 2.3, 5.9 χ2 = 1.3, df = 2 a
Males 16 5.6 ± 3.3 3.3, 17.2 p = 0.530 a

Loligo forbesi Juveniles 20 8.0 ± 2.1 4.9, 12.0 KW + MPC tests (Holm’s) a
Females 9 7.4 ± 3.2 1.7, 11.0 χ2 = 26.7, df = 2 a
Males 21 4.0 ± 1.3 1.3, 6.7 p < 0.001 b

Sepia officinalis Juveniles 6 7.0 ± 1.7 5.5, 9.8 KW + MPC tests (Holm’s) a
Females 10 13.0 ± 13.9 2.5, 44.7 χ2 = 0.8, df = 2 a
Males 14 8.4 ± 7.0 3.3, 30.1 p = 0.670 a

Table 2. Loligo vulgaris, L. forbesi and Sepia officinalis. Muscle δ15N values, muscle Hg, and digestive gland Cd concentrations
in individuals separated by sex (juveniles: small individuals with no visible distinct gonads). Groups with the same letter indicate
that sexes are not significantly different (post hoc Tukey’s test in the case of ANOVA, multiple comparison test [MPC] with

Holm’s adjustment method in the case of Kruskal-Wallis [KW]). N = sample size



Chouvelon et al.: Inter-specific and ontogenic differences in δ13C, δ15N, Hg, Cd

species, with Eledone cirrhosa > Sepia officinalis >
Loligo vulgaris (Fig. 2, Table 1). Indeed, food is the ma-
jor source of Cd intake by cephalopods (Koyama et al.
2000, Bustamante et al. 2002a), and benthic inverte-
brates generally exhibit higher Cd concentrations rela-
tive to fish (Cossa & Lassus 1989, Cabrera et al. 1994).
In the species more associated with the oceanic do-

main, the higher Cd concentrations in Todarodes sagit-
tatus compared to L. forbesi may be related to physio-
logical features more than to diet or habitat, as both
species had a similar isotopic niche (Fig. 3). As dis-
cussed above, both squids are mainly piscivorous and
present an offshore distribution (Pierce et al. 1994, Lor-
dan et al. 2001a,b), but their digestive gland cells
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Fig. 5. Loligo vulgaris, L. forbesi and Sepia officinalis. Relationships between log-transformed muscle Hg concentrations and both
dorsal mantle length (DML) (left panels) and δ15N values (right panels) in (a,b) Loligo vulgaris, (c,d) L. forbesi, and (e,f) Sepia
officinalis; individuals are separated by sex and by year. Squares = males; triangles = females; circles = juveniles; black = 2008;
white = 2006. Smoothing lines (robust, locally weighted scatterplot smoothing system based on the LOWESS algorithm with the

software R) represent the fitted non-linear trend of the values when the correlation coefficient test is significant
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strongly differ in terms of structure. The digestive
gland cells of T. sagittatus contain a ‘boule’ structure
typical of many cephalopod species that are non-exis-
tent in Loliginidae (Boucaud-Camou & Yim 1980,
Boucher-Rodoni & Boucaud-Camou 1987). ‘Boules’
may contribute to storage of larger amounts of Cd in T.
sagittatus (Bustamante et al. 2002b). Therefore, the in-
fluence of such a physiological difference cannot be
excluded for the species that inhabit the coastal do-
main; E. cirrhosa and S. officinalis have ‘boule’ struc-
tures, while they are absent in L. vulgaris (Table 1).

Ontogenic changes as an important source of 
intra-specific variations

In cephalopod species that presented the widest size
ranges, the analysis of the relationship between δ15N
values and DML allowed us to distinguish different
feeding profiles during ontogenesis (Zimmer et al.
2007, Parry 2008). δ15N values in Loligo vulgaris
increased drastically between juvenile and adult
stages and then remained relatively constant (females
and males not differing) (Fig. 4, Table 2). In contrast, in
L. forbesi, only larger males (>300 mm DML) showed
significantly higher δ15N values (Fig. 4). This may be
due to a difference in prey composition or prey size
range in those larger individuals that may have greater
energy needs (Pierce et al. 1994, Rocha et al. 1994).
Nevertheless, the variability in δ15N values over life
stages for males, females, and juveniles strongly sug-
gest that this species has an important dietary plastic-
ity during ontogenesis (Fig. 4). As previously com-
mented, L. vulgaris likely remains in coastal waters
throughout its life cycle, whereas L. forbesi is a more
oceanic species that has relatively long offshore dis-
placements throughout its life cycle (Rocha & Guerra
1999). These different ontogenic patterns between
both Loligo species are confirmed by the analyses of
their isotopic signatures (Figs. 3 & 4). While L. vulgaris
may always feed on the same prey species in the
coastal food web (i.e. mainly small pelagic coastal fish),
L. forbesi may feed on different food webs with differ-
ent baseline isotopic signatures during ontogenesis
(e.g. coastal vs. upper slope or oceanic food web).
This could contribute to the greater trophic plasticity of
L. forbesi in comparison with L. vulgaris. Furthermore,
the contribution of crustaceans is slightly higher in the
diet of L. forbesi than in those of L. vulgaris (Guerra &
Rocha 1994, Pierce et al. 1994). Finally, δ15N values
recorded for juveniles, males, and females in Sepia
officinalis suggest that this species also displays a
strong dietary plasticity at all stages of its life cycle
(Fig. 4, Table 2). Thus, isotopic signatures were in
agreement with the stomach content data that re -

flected the general opportunistic behaviour and flexi-
ble diet of S. officinalis (Pinczon du Sel et al. 2000,
Neves et al. 2009).

Ontogenic effects were also found for Hg in the man-
tle muscle. Hg concentrations varied greatly within
each species, with concentrations up to 10 times
greater in the individuals showing the highest values
compared to those displaying the lowest ones (e.g. in
Loligo forbesi, Table 1). Hg levels increased with DML
in the 3 species, and correlations between Hg concen-
trations and δ15N values were considerably lower than
those with DML (Fig. 5). This result highlights the abil-
ity for Hg to bioaccumulate with age in the muscle of
cephalopods (Rossi et al. 1993, Pierce et al. 2008).
However, the relationship between muscle Hg levels
and δ15N values in L. vulgaris, in particular, also re -
flected the trophic switch between juveniles and adults
(Figs. 4 & 5) since food intake is the major source of Hg
in cephalopods (Lacoue-Labarthe et al. 2009). Hg spe-
ciation has not been determined in this study, but it is
likely that bioaccumulated Hg was the organic form
methyl-Hg, which represents the most important form
of Hg in cephalopod muscle (Bustamante et al. 2006,
Raimundo et al. 2010). The role of the digestive gland
in the storage and detoxification of Hg is still contro-
versial (Bustamante et al. 2006, 2008, Pierce et al. 2008,
Lacoue-Labarthe et al. 2009). A preferential redistribu-
tion of methyl-Hg from the digestive gland to the mus-
cle is expected (Bustamante et al. 2006), where it may
bind with sulphydryl groups of muscular proteins
(Bloom 1992, Bustamante et al. 2006) and accumulate
during ontogenesis.

Finally, the bioaccumulation patterns of Cd in the
digestive gland during ontogenesis differed between
Loligo vulgaris, L. forbesi and Sepia officinalis (Fig. 6,
Table 2). While no clear pattern of digestive gland Cd
concentrations with DML or δ15N values was revealed
in L. vulgaris; Cd concentrations in the digestive gland
of L. forbesi significantly decreased with DML and to
lesser extent with δ15N values (Fig. 6). Such a decrease
in Cd concentrations with increasing body size was
already observed for L. forbesi sampled around the
United Kingdom (Pierce et al. 2008). These authors
explained the observed decrease as a consequence of
a dietary shift with increasing body size, strengthened
by a dilution of the metal in the digestive gland due to
the very fast growth of this squid. The dilution hypoth-
esis seems to be confirmed in the present study for L.
forbesi. Indeed, the decrease in Cd concentrations is
linked to larger males presenting the lowest Cd con-
centrations and also the lowest δ15N values (Figs. 4 & 6,
Table 2). By contrast with L. forbesi, Cd concentrations
in the digestive gland of S. officinalis from the Bay of
Biscay did not show clear relationships with DML nor
with δ15N values or sex (Fig 6, Table 2). Thus, our
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results for S. officinalis do not match those from Mira-
mand et al. (2006) who found a clear increase of Cd
concentrations with size in the digestive gland of the
cuttlefish from the English Channel. Such an increase
was explained by the very long biological half-life of
Cd in cuttlefish following its assimilation from food
(Bustamante et al. 2002a). The strong retention capac-

ity of Cd in the digestive gland of S. officinalis is prob-
ably related to its cells containing the typical ‘boule’
structures (Boucaud-Camou & Yim 1980, Boucher-
Rodoni & Boucaud-Camou 1987), as commented above
for T. sagittatus. Nevertheless, in our study, values of
Cd levels varied greatly between individuals of S.
officinalis (ranging from 2.5 to 44.7 µg g–1 dry wt).
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Fig. 6. Loligo vulgaris, L. forbesi and Sepia officinalis. Relationships between log-transformed digestive gland Cd concentrations
and both dorsal mantle length (DML) (left panels) and δ15N values (right panels) in (a,b) Loligo vulgaris, (c,d) L. forbesi, and (e,f)
Sepia officinalis; individuals are separated by sex and by year. Squares = males; triangles = females; circles = juveniles; black =
2008; white = 2006. Smoothing lines (robust, locally weighted scatterplot smoothing system based on the LOWESS algorithm with

the software R) represent the fitted non-linear trend of the values when the correlation coefficient test is significant
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In the absence of clear relationships of Cd concentra-
tions with DML and  δ15N values, we can only specu-
late in explaining this variability. Migration patterns of
S. officinalis for reproduction may explain such a dif-
ference between individuals that come from different
sites with different degrees of contamination of poten-
tial prey. Further investigations of the possible geo-
graphical influence on Cd concentrations should be
carried out.

Implication for the use of stable isotopes, Hg and Cd
as ecological tracers

Stable isotopes of carbon and nitrogen appear to
offer great possibilities for describing the trophic ecol-
ogy of species at the community scale (resource parti-
tioning, trophic segregation), as well as changes of
dietary habits during ontogenesis (Cherel & Hobson
2005, Zimmer et al. 2007, Parry 2008, Cherel et al.
2009, present study). Also, if information derived from
isotopic signatures often need to be validated by avail-
able data on diet (e.g. from stomach contents analy-
ses), the stable isotope approach presents the advan-
tage of reflecting a longer-term average diet compared
to the stomach contents method (Ruiz - Cooley et al.
2006). Nevertheless, there is a dramatic lack of infor-
mation on specific differences in metabolic turn-over
and isotopic fractionation in cephalopods, and such
information could greatly improve our understanding
and interpretation of isotopic data for inter-specific dif-
ferences in trophic ecology.

Inter-specific comparisons (i.e. same order of magni-
tude in muscle Hg concentrations) as well as intra-spe-
cific ones (i.e. bioaccumulation with age in the muscle
for all species) revealed that muscular Hg does not rep-
resent a good tracer of the feeding zone or habitat at
the scale of the Bay of Biscay. Individuals from about
the same size or age class must be considered for com-
parison (e.g. inter-specific or geographical compar-
isons). The same precaution should probably be taken
to use this trace element as an indicator of the trophic
level, as Hg (and particularly methyl-Hg) biomagnifies
along food chains (Eisler 1987, Cossa et al. 1990).

Finally, despite direct ontogenic effects related to
growth in some species (i.e. dilution effect), digestive
gland Cd concentrations in cephalopods are likely to
reflect (1) diet preferences between species (i.e. spe-
cies mainly feeding on benthic crustaceans vs. pelagic
fish prey) despite possible individual specialization
during ontogenesis and (2) differences in the physiol-
ogy of metal accumulation between species (Busta-
mante et al. 2002b). Also, in cases where cephalopods
would be considered as prey in diet studies of their
consumers such as marine mammals or seabirds, only a

limited size range of individuals (potential size range
consumed) should be considered (Lahaye et al. 2005),
and ontogenic effects should not cause any bias.
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