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Introduction

Effective conservation of threatened species requires moni-
torable parameters sensitive to the measures implemented 
(Wikelski and Cooke 2006; Frederiksen et al. 2014). For 
example, estimating breeding success can explain whether 
predator control is having the desired effect in popula-
tions where invasive alien species predate nests (Pascal et 
al. 2008; Oppel et al. 2022), and whether efforts aimed at 
restoring food webs have increased food availability where 
this has been restricting offspring provisioning (Sydeman 
et al. 2021). Disentangling the effects of multiple pres-
sures is especially important for seabirds as they forage at 
sea but nest on land, thus facing both marine and terres-
trial threats (Dias et al. 2019). A major terrestrial threat to 
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Abstract
Seabirds face a trade-off between offspring provisioning and foraging effort. The hormone corticosterone regulates energy 
balance, while stable isotopes are proxies for diet composition. Measurements of Mercury (Hg), corticosterone (CORTf) 
and stable isotope values of C (δ13C) and N (δ15N), integrated during feather growth in Yelkouan shearwater (Puffinus yel-
kouan) nestlings, were used to understand whether chick provisioning explains fledging and adult breeding success. Chicks 
at colonies and fledglings that failed their first fledging attempt were sampled in three breeding seasons (2020–2022) on 
Malta (36.01° N, 14.35° E). Failed fledglings were found at sea unable to fly or on urban coasts, presumably attracted 
by light pollution. Adult shearwaters were GPS-tracked in multiple seasons (2012–2022). Differences in provisioning 
measures (δ15N, δ13C and CORTf) between failed fledglings and chicks at colonies, associations between provisioning 
and adult breeding success, and adult foraging strategies were investigated. Shearwater nestlings showed a response to 
variations in diet, by which CORTf was inversely related to δ15N and δ13C. Hg load was larger at higher trophic position, 
while there was no evidence for CORTf suppression by Hg. Failed fledglings had disproportionally higher CORTf, indicat-
ing that rearing conditions affect fledging success. Adult breeding success was related to provisioning in nestlings, while 
adult shearwaters at the colony with higher breeding success made shorter foraging trips. Findings suggest that several 
chicks experience sub-optimal provisioning, with negative implications on fledging and grounding risk during light pol-
lution attraction. Foraging conditions affect adult breeding success, specifying that seabird conservation at colonies needs 
complementary marine restoration.
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seabirds is invasive alien species introduced to islands, but 
nest and adult predation can be alleviated through predator 
eradication or control (Phillips et al. 2022). Another threat 
particularly affecting burrow-nesting species and demand-
ing increasing rescue campaign effort, is the grounding of 
fledglings attributed to light pollution, by which young sea-
birds land in urban areas away from water, instead of fly-
ing out to sea (Raine et al. 2020; Rodríguez et al. 2022). At 
sea, food available to seabirds is affected by competition 
between seabirds and fisheries and the threat still calls for 
large scale harvest management (Grémillet et al. 2018). The 
marine prey, trophic position and foraging areas determine 
pollutant load such as mercury (Hg), which in turn has also 
been shown to contribute to lower breeding success (Goutte 
et al. 2014), linked for example to higher egg neglect (Tartu 
et al. 2015).

Seabird breeding success is reduced in response to low 
food availability, small prey size and low energetic content 
(Wanless et al. 2005; Paiva et al. 2013; Fayet et al. 2021). 
However, the effect of food supply on breeding success is 
sometimes only registered when prey density falls below 
critical thresholds (Piatt et al. 2007; Quillfeldt et al. 2007). 
Predators, particularly generalists, can change to other, less-
preferred prey species (Will et al. 2015; Romero et al. 2021), 
or increase foraging effort (Harding et al. 2007; Bertrand et 
al. 2012; Paiva et al. 2013). In such cases, behavioural adap-
tations may entail physiological costs, and measuring levels 
of corticosterone can give additional insights into the sub-
lethal effects of resource availability (Kitaysky et al. 2001; 
Quillfeldt and Möstl 2003; Quillfeldt et al. 2010; Will et al. 
2015; Lamb et al. 2016).

Corticosterone is the main glucocorticoid hormone in 
birds, primarily modulating energy balance (MacDougall-
Shackleton et al. 2019), while elevated levels are involved 
in mediating perceived or actual stressors through physi-
ological and behavioural means (Blas 2015; Romero and 
Fairhurst 2016). In addition to a relationship with feed-
ing ecology (Fairhurst et al. 2014), corticosterone shows a 
response to social and environmental conditions (Fairhurst 
et al. 2012a; Catitti et al. 2022), while pollutants such as 
Hg can disrupt corticosterone secretion (Herring et al. 2012; 
Provencher et al. 2016). Circulating corticosterone is incor-
porated into growing feathers (CORTf) (Jenni-Eiermann 
et al. 2015), as is Hg (Blévin et al. 2013). Likewise, dur-
ing feather growth the stable isotope ratios of C (13C/12C, 
δ13C) and N (15N/14N, δ15N) are determined by the assimi-
lated diet (Bearhop et al. 2002) and physiology (Sears et 
al. 2009). Specifically, δ13C indicates foraging habitat (e.g. 
inshore vs. offshore, pelagic vs. benthic or demersal), while 
δ15N indicates trophic position because it is enriched up the 
food chain and predominantly feeding on prey with higher 
δ15N increases δ15N values in the predator (Hobson et al. 

1994). Therefore, δ15N values are taken as an indication of 
relative diet quality (Pollet et al. 2014), with for example 
higher δ15N indicating a large proportion of fish compared 
to zooplankton in the diet (Péron et al. 2013). In seabirds, 
δ15N values are also affected by provisioning quantity, 
with lower δ15N values following smaller meal size (Wil-
liams et al. 2007), but these differences are not necessarily 
detectable in feathers (Sears et al. 2009). Feather keratin is 
metabolically inert after synthesis, and therefore the CORTf 
and stable isotope values give an integrated measure of the 
physiological response to provisioning and pollutant load 
on the same time scale (Fairhurst et al. 2014). Feathers that 
are grown in the nest before fledging give retrospective 
measures of parental provisioning during the rearing period 
(Will et al. 2015; Romero and Fairhurst 2016).

Long lived birds are expected to prioritise self-mainte-
nance over the current breeding attempt (Williams 1966), 
meaning nestlings often experience the most apparent 
effects of poor foraging conditions (Quillfeldt and Möstl 
2003; Séchaud et al. 2022; Whitehead et al. 2022). How-
ever, monitoring chicks of cliff nesting seabirds in deep 
burrows is limited by difficult access and number of nests 
visible to human observers, leading to small nest sample 
sizes, few visits and uncertainty on nest outcome (see also 
Rodríguez et al. 2022). Adult breeding success in several 
burrow nesting seabirds in the order Procellariiformes, is in 
practice an estimate of nest success, but not whether chicks 
successfully leave the colony on their first flight out to sea, 
which they do in the absence of parental influence following 
a desertion period (Brooke 1986). Particularly high mortal-
ity takes place within days of seabirds fledging from the col-
ony, highlighting the need for understanding this life stage 
better (Rodríguez et al. 2017a, b; Afán et al. 2019; Weimer-
skirch et al. 2019). Estimating successful fledging is uncer-
tain when using capture-mark-recapture models because 
in long lived species individuals might take several years 
to return to the colonies (Jenouvrier et al. 2008), although 
such studies can reveal long-term relationships between sur-
vival and fledging body mass (Swanson et al. 2023). Track-
ing fledglings can be expensive and biased towards a small 
sample of the fittest individuals (Afán et al. 2019; Raine et 
al. 2020). Establishing retrospective measures of parental 
provisioning is a potential method to understand causes of 
fledging failure.

This study investigates chick-rearing provisioning 
measured with δ13C, δ15N, CORTf and Hg in feathers of 
Yelkouan shearwater Puffinus yelkouan (henceforth shear-
water) chicks, and the effect on their fledging success by 
comparing chicks sampled at the colonies prior to fledging 
and those rescued at sea and urban areas (failed fledging). 
Shearwater fledglings rescued at sea were too weak to fly or 
their feathers lacked the necessary waterproofing rendering 
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them waterlogged, while fledglings found on land in urban 
settings were likely attracted by light pollution, a process 
that might not be affected by their condition (Rodríguez et 
al. 2017b; Weimerskirch et al. 2019). The δ13C, δ15N and 
CORTf measures in chicks are then used to test for effect of 
rearing conditions on adult breeding success at the colony 
level to disentangle between provisioning effects and exter-
nal effects (f.eg. nest predation) on nest success. Finally, 
to investigate possible mechanisms underlying differences 
between colonies in chick provisioning, adult foraging strat-
egies measured as trip metrics and foraging area overlap 
are compared between the two main colonies. Four main 
hypotheses are defined in the study:

1.	 Nestlings’ and fledglings’ CORTf and Hg are related to 
stable isotope values. An inverse relationship between 
CORTf and δ15N and a positive relationship between Hg 
and δ15N are expected since higher δ15N reflects provi-
sioning at higher trophic positions.

2.	 Fledging success is dependent on rearing conditions. 
Since there are potentially different mechanisms caus-
ing fledging to fail (Rodríguez et al. 2017b), shearwater 
fledglings rescued at sea are expected to have propor-
tionally higher CORTf and lower δ15N (i.e. poor rearing 
conditions), but shearwaters rescued from urban areas 
are not expected to have significantly different values to 
fledglings at colonies (i.e. light pollution effect is stron-
ger than rearing conditions).

3.	 Poor rearing conditions are reflected in adult breeding 
success at the colony level. We expect higher nestling 

CORTf and lower δ15N to be associated with lower 
breeding success.

4.	 Differences in foraging strategies are present between 
colonies with divergent breeding success, with longer 
foraging trips at the colony with lower breeding success.

Materials and methods

Study species and site

The study species is a burrow-nesting seabird with noctur-
nal colony attendance and nesting in deep caves and cliffs. 
It is a generalist marine predator with a wide trophic niche 
and diversity of marine prey consumed (Péron et al. 2013; 
Austad et al. 2025). A single egg is incubated for around 
50 days and the nest-bound chick is fed by both parents for 
around 60–80 days. All four colonies monitored in this study 
(Fig.  1), Rdum tal-Madonna (RM), Ċumnija & Majjistral 
(MJ), Comino & Cominotto (CM) and St Paul’s Islands 
(SP), are subject to annual seasonal rodent control result-
ing in improved shearwater breeding success, since 2007 
for RM and since 2018 for the other three colonies (Lago 
et al. 2019). Control at all colonies is aimed at the black rat 
Rattus rattus and carried out using second-generation anti-
coagulant rodenticide baiting during the shearwater nesting 
season as described by Lago et al. (2019) and complimented 
by mechanical auto-resetting GoodNature A24 traps (Good-
Nature Ltd. Wellington, NZ). Control differs from eradica-
tion in that it aims to suppress the population of invasive 
alien species at sites where eradicating whole populations 

Fig. 1  Map of Yelkouan shearwater 
colonies in the Maltese Islands 
(dark green lines). Adult breeding 
success and feathers from chicks 
were sampled at four colonies 
(brown diamond markers; Rdum 
tal-Madonna – RM; Ċumnija & 
Majjistral – MJ; Comino & Comi-
notto – CM and St Paul’s Islands 
– SP). Fledglings were rescued on 
failed fledging by members of the 
public across various locations, 
both at ‘sea’ (blue circle mark-
ers) or grounded in ‘urban’ light 
polluted areas (orange triangle 
markers)
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Tracking adult shearwaters during foraging trips

Annual consistency in foraging areas by chick-rearing sea-
birds tends to be high (Beal et al. 2023) and we use tracking 
data collected within a decade to test differences in forag-
ing trips by adult shearwaters from RM and MJ colonies. 
We obtained foraging tracks during the chick-rearing period 
from GPS-loggers on 21 shearwaters at MJ and 25 at RM 
in 2012–2014 (unpackaged CatLog Gen2 [Catnip Technolo-
gies, Anderson, USA] and i-gotU GT-120 [Mobile Action 
Technology, New Taipei City, Taiwan], ~ 14  g) (Gatt et 
al. 2019), on two shearwaters at RM in 2019 (Nanofix® 
GEO + RF [Pathtrack Ltd, Otley, UK], 5 g) and on six shear-
waters at MJ and 13 at RM in 2021–2022 (Pinpoint-75 
[Lotek Wireless Inc., Newmarket, Canada], 4.5 g and Axy-
Trek [Technosmart Europe srl, Rome, Italy], 8 g). GPS-fix 
frequencies varied between two to 60 min, and were inter-
polated to a constant interval of 30 min using the ‘redisltraj’ 
function in ‘adehabitatLT’ R package (Calenge 2006).

Corticosterone measurement in feathers

To measure CORT deposited in the feather during growth 
and to exclude any CORT circulating in the blood during 
sampling, the vascularised section of the calamus was cut 
off (Bortolotti et al. 2008). The remaining length of the 
feather was measured to the nearest mm, flat against a ruler 
(mean ± SD = 59.5 ± 6.9 mm). We extracted CORT from sin-
gle feathers using 1.5 ml methanol, after milling each feather 
to a fine powder inside 2  ml centrifuge tubes with ~ 30 
grinding metal balls at 30 Hz for 6 min in a mill (RETSCH 
MM400, Retsch GmbH, Haan, Germany). The feather pow-
der and methanol were incubated for 10 h at 50 °C in a water 
bath (Bortolotti et al. 2008), after which 1 ml was pipetted to 
a clean tube and the methanol was evaporated with nitrogen 
gas at 50 °C (Catitti et al. 2022). The mean ± SD proportion 
of methanol extracted was 0.66 ± 0.04. Corticosterone was 
then resuspended in assay buffer and measured in dupli-
cate using in a corticosterone ELISA kit (ADI-901-097, 
Enzo Life Sciences Inc., New York, USA). The assay cross 
reactivity for this kit is high with corticosterone (100%) but 
low with related steroids (e.g. progesterone: 1.7%; cortisol: 
0.046%), and we did not use a steroid displacement reagent. 
A microplate reader measured the resulting colour in each 
well. When duplicates had a coefficient of variance in net 
optical density larger than 10%, or when values were on the 
limit of the standard curve prepared on the same plate, we did 
not retain the reading for further analysis. We excluded 58 
readings for these reasons, but for 32 individuals with suffi-
cient feather material and a failed first reading, we repeated 
corticosterone extraction. Readings were obtained from 11 
plates, where samples from different sites were distributed 

is not practicable, resulting in similar benefits at local scales 
but requiring repeated efforts while not excluding preda-
tion risk entirely (Pascal et al. 2008; Lago et al. 2019). All 
four colonies are within 10 km of each other on the Maltese 
Islands (36.01° N, 14.35° E: Fig. 1), of which RM and MJ 
are the largest in terms of population size (Gatt et al. 2019; 
Lago et al. 2019).

Feather collection

We plucked entire undertail covert feathers from chicks still 
in the nest as well as chicks training their wings outside 
their burrows at four colonies during three breeding sea-
sons (2020 N = 54 [inside nest = 18, outside burrows = 36]; 
2021 N = 43 [28, 15]; 2022: N = 42 [24, 18]). We also col-
lected feathers from fledglings found at sea or on land in 
urban areas away from the nesting sites by members of the 
public who contacted BirdLife Malta (Figs.  1 and 2020: 
N = 7; 2021: N = 15; 2022: N = 8). Six of these, and all being 
birds found at sea, were either dead or died shortly after 
collection, while all other birds were subsequently released. 
We weighed birds with a spring balance (± 10 g) and mea-
sured tarsus and wing length (mm; Fig. S1), but do not use 
these measurements further in the current study, since we 
were not able to determine age and time after failed fledg-
ing, which is spent fasting (Rodríguez et al. 2017b).

To determine the age at which undertail feathers are 
grown, we benefited from a nestbox programme to measure 
nestlings (N = 10) from hatching to fledging on a regular 
basis. We determined the undertail covert feather growth to 
occur between 25 and 72 days of age (mean ± SD = 47 ± 11 
days), which corresponds to the period with most rapid 
wing length growth (Fig. S2).

Adult breeding success estimation

Apparent adult breeding success was estimated during the 
seasons 2020, 2021 and 2022 on a sample of nests through 
at least three checks per season, during incubation, early and 
late chick-rearing, respectively. Success was estimated from 
the number of nests occupied by incubating adults, as the 
percentage of nests with a chick reaching at least four weeks 
of age or finding a nest empty at the expected age of fledg-
ing. In the latter case nests were only marked successful if 
they contained shed down indicating that the nest had been 
occupied by a nestling that reached fledging age. To reduce 
bias from unequal visit frequency (Mayfield 1975), we esti-
mated daily survival rates (DSR) at the colony level using 
the R package ‘RMark’ (Laake 2013) with colony and year 
as covariates. We use DSR as an indicator of adult breeding 
success.
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the average of the duplicate reads in µg g−1 dry weight (dw). 
The variation between duplicates ± SD was 2.03 ± 1.69%. 
Blanks were analysed at the beginning of each set of sam-
ples and the detection limit of the analyser was 0.1 ng.

Statistics

All analyses and graphical representations were performed 
in R v4.0.5–4.4.2 (R Core Team 2021). Generalised linear 
mixed models (GLMMs) were fit in ‘glmmTMB’ pack-
age (Brooks et al. 2017), while residual diagnostics were 
checked with the ‘DHARMa’ package (Hartig 2022). To 
improve normality, we log-transformed CORTf response 
variable in all models.

We first correlated δ15N with δ13C in an GLMM, includ-
ing year as a random effect. In a second GLMM we tested 
for the effect of δ15N and δ13C on CORTf. Using a GLM, 
since no random effects were applicable, we tested for 
the effect of δ15N and δ13C on Hg. We then tested for the 
effect of Hg and stable isotopes on CORTf using a GLMM. 
In addition to the models testing the relationship between 
these measurements, we repeated each model with ‘Site’ as 
a predictor variable, where the four colonies (RM, MJ, SP, 
CM) and the two rescue location types (Sea, Urban) were 
each factor levels. We conducted pairwise post-hoc com-
parisons between sites using the package ‘emmeans’ (Lenth 
2025). In all models with CORTf, we included a categorical 
predictor variable for whether feather growth was complete, 
because some nestlings (N = 33) were sampled before sam-
pled feathers were fully grown and changes in CORT levels 
might occur with age (Quillfeldt et al. 2010). CORTf models 
also include a random effect for PlateID (N = 11) to account 
for inter-assay variation.

To address the question on whether fledging success is 
dependent on rearing conditions we test for proportionally 
lower δ15N and higher CORTf in failed fledglings com-
pared to chicks outside their nests ready to fledge from the 
colonies, using GLMMs and post-hoc pairwise tests. While 
excluding nestlings, we grouped all chicks sampled prior 
to fledging at the colonies, and kept fledglings found at sea 
and in urban areas separate (Fig. 1), leading to a three-level 
factor. In the GLMM with δ15N as a dependent variable, we 
additionally included δ13C as a predictor variable and year 
as a random effect, and in the GLMM with CORTf as the 
dependent variable we included year and plate ID as random 
effects.

To test for differences in breeding success at the colony 
level and effect of rearing conditions, we scaled the DSR 
estimate for improved normality and first tested for colony 
differences in a GLMM with colony as the predictor vari-
able and year as a random effect. We then separately tested 
for the effect of mean CORTf, mean δ15N and mean δ13C 

across plates (Fig. S3). Two feather pools from shearwa-
ter feathers (2020–2021 and 2022 samples) were used as 
internal controls intra-assay variation was 9.8% (N = 11) 
and inter-assay variation was 39% (N = 8) and 18% (N = 3) 
respectively. To report concentration in relation to feather 
length (pg mm−1) (Jenni-Eiermann et al. 2015), the concen-
tration of CORT per feather was calculated as follows:

Concentration/

((
Feather length ∗ proportion methanol extracted

assay buffer volume

)

∗ volume in each well

)

where volume in each well was 100 µl.

Bulk stable isotope analysis

To obtain an understanding of provisioning trophic ecology 
during the rearing period, we analysed bulk stable isotope 
ratios of N and C. The feathers used for stable isotope and 
for CORTf measurements were different but were from the 
same part of the body and grown simultaneously. We pack-
aged between 0.33 and 0.57 mg of feather vane material in 
tin-cups. Stable isotope measurements were obtained with a 
Thermo Scientific Delta V Plus mass spectrometer (Thermo 
Scientific, Bremen, Germany) coupled to a Thermo Scien-
tific elemental analyser (Thermo Scientific, Milan, Italy) at 
the LIENSs Stable Isotope Facility. Results are expressed in 
the δ unit notation as deviations from N2 in air for δ15N and 
Vienna Pee Dee Belemnite for δ13C, following the formula:

δ 15N or δ 13C = [( Rsample/Rstandard) − 1] x 103

where R is 15N/14N or 13C/12C, respectively. Internal labo-
ratory standards USGS-61 (Caffeine) and USGS-63 (Caf-
feine) were used to check accuracy. The analytical precision 
was < 0.15‰ for both δ15N or δ13C.

Mercury analysis

Analysis of total Hg (THg) includes both inorganic and 
organic Hg, the latter being mainly methyl-Hg (MeHg). In 
feathers, more than 90% of THg is in the form of MeHg 
(Renedo et al. 2017). THg (hereafter Hg) was used as an 
indicator of MeHg in the shearwater feathers. Measure-
ments of Hg were made for the feathers collected in 2022 
(N = 50), on aliquots of finely cut feathers ranging from 0.45 
to 0.96  mg and analysed in duplicates per sample using 
an Advanced Mercury Analyzer spectrophotometer (Altec 
AMA 254, Altec, Prague, Czech Republic). Accuracy was 
checked using a Certified Reference Material, Tort-3 Lobster 
Hepatopancreas (NRC, Canada), leading to a recovery rate 
of 98.9 ± 0.5% (N = 6). Hg concentrations are presented as 
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values in nestlings. Maps were produced using QGIS, in 
EPSG 4326 WGS 84.

Results

Relationships between stable isotopes, CORTf, Hg 
and site

The range of δ15N in shearwater feathers was wider 
than the range of δ13C (δ15N: 7.24 to 11.45‰, 
mean ± SD = 10.373 ± 0.622‰ and δ13C: −19.48 to −16.86‰, 
mean ± SD = −18.460 ± 0.470‰, N = 145). On removing 
three data points that were violating the outlier test, we found 
a strong positive effect of δ13C on δ15N (GLMM parameter 
estimate ± SE = 0.468 ± 0.085, P = < 0.001, residual d.f. = 
138; Table S2). When including ‘Site’ as predictor to the 
model, it was evident that chicks at RM had higher δ15N 
than at MJ (Tukey post hoc estimate ± SE = 0.470 ± 0.113, 
P < 0.001, residual d.f. = 133) and higher than grounded 
fledglings (Tukey post hoc estimate ± SE = 0.373 ± 0.114, 
P = 0.017, residual d.f. = 133, Fig. 2).

We found moderate evidence for higher CORTf in response 
to both lower δ15N (GLMM parameter estimate ± SE = 
−0.127 ± 0.050, P = 0.012; Fig. 3) and δ13C (GLMM param-
eter estimate ± SE = −0.147 ± 0.066, P = 0.026; Fig. 3), with 
no effect of feather growth completeness (GLMM param-
eter estimate ± SE = −0.076 ± 0.076, P = 0.322) within the 
same model (residual d.f. = 116; Table S2). In the model 
including ‘Site’ as a predictor variable, fledglings found at 
sea had higher CORTf than chicks at all other sites (GLMM 
parameter estimate ± SE = 0.761 ± 0.163, P < 0.001, residual 
d.f. = 111; Fig. 3; Table S2), confirmed with post hoc tests 
between all respective pairs. The moderate evidence for an 
inverse relationship between CORTf and δ15N was main-
tained in the ‘Site’ model (GLMM parameter estimate ± SE 
= −0.134 ± 0.066, P = 0.043, residual d.f. = 111; Table S2).

Mean Hg ± SD was 1.301 ± 0.529 µg g−1 and we found 
strong evidence that Hg increased with higher δ15N 
(GLMM parameter estimate ± SE = 0.429 ± 0.133, P = 0.002) 
and δ13C (GLMM parameter estimate ± SE = 0.487 ± 0.134, 
P = 0.001), within the same model (residual d.f. = 47; Table 
S2). None of the pairwise comparisons between sites were 
significant (residual d.f. = 42, Fig. 4). We found no evidence 
of a relationship between Hg and CORTf (GLMM param-
eter estimate ± SE = −0.063 ± 0.117, P = 0.594, residual d.f. 
= 39; Table S2).

Effect of chick provisioning on fledging success

We found weak evidence that fledglings grounded in 
urban areas had proportionally different δ15N to chicks 

per colony and year as predictor variables, while colony 
and year were random effects. The latter model had 10 data 
points because we did not have stable isotope and CORTf 
measurements for SP in 2020 and only two measurements 
from SP in 2022 (Table S1).

Tracking data analysis

Kernel density estimation and trip summaries were analysed 
for the two colonies with tracking data (RM, MJ), using the 
R package ‘track2KBA’ (Beal et al. 2021). First, these anal-
yses were performed for all years together (2012–2022), 
and then repeated for 2021 alone. 2021 was the only year 
with feather sampling and tracking data at both MJ and RM 
concurrently.

Utilisation distribution (UD) was estimated using kernel 
density estimation in the R package ‘track2KBA’ at 50% for 
each individual track to identify core foraging areas (Beal et 
al. 2021). Prior to UD estimation, we removed points within 
10 km of the colonies to eliminate bias towards non-forag-
ing behaviour such as rafting (Richards et al. 2019). To find 
a suitable smoothing parameter for the kernel density esti-
mation, we used first passage time analysis in the ‘findScale’ 
function to identify the scale at which shearwaters perform 
area-restricted search whilst foraging (Beal et al. 2021). We 
used the mean of the values obtained for MJ (13) and RM 
(6) as the smoothing parameter (9.5), to make sure that any 
differences in foraging areas is not an artifact of different 
smoothing parameters. To estimate how representative the 
sample of tracked shearwaters was per colony we used the 
function ‘repAssess’, which over multiple iterations mea-
sures the overlap between a sub-sample of core areas and 
tracks of individuals not included in the sub-sample (Beal 
et al. 2021). The foraging area shared by shearwaters from 
the two colonies was calculated using the following formula 
(Ravache et al. 2020):

% Shared Area = [A0] ÷ [( AColony1 − A0)
+ (AColony2 − A0) + A0]

Where A0 is the area of 50% UD intersection between colo-
nies, and AColony is the area of the 50% UD per colony, 
calculated with the R package ‘sf’ (Pebesma 2018).

Trip summaries only considered complete trips. Dif-
ference in trip duration (hr), total distance travelled (km), 
maximum distance travelled from colony (km) and mean 
speed (total distance divided by duration) per colony was 
tested for using separate GLMMs in ‘glmmTMB’ (Brooks 
et al. 2017), with individual and year as random effects. All 
trip metrics were log transformed. Only four tracked adults 
were parents to sampled nestlings, and we do not carry out 
direct analysis to link specific foraging areas with measured 
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strong evidence that fledglings rescued at sea had higher 
CORTf (Tukey post hoc estimate ± SE for Colony – Sea = 
−0.905 ± 0.169, P < 0.001, residual d.f. = 75), as did the ones 
grounded in urban areas (Tukey post hoc estimate ± SE for 

in the colonies (Tukey post hoc estimate ± SE for Colony 
– Urban = 0.262 ± 0.113, P = 0.059, residual d.f. = 73) and 
no difference in fledglings rescued at sea (Tukey post hoc 
estimate ± SE for Colony – Sea = 0.053 ± 0.166, P = 0.946, 
residual d.f. = 73; Fig.  5; Table S2). However, we found 

Fig. 3  Feather corticosterone 
(CORTf pg mm−1) against δ13C 
(‰) δ15N (‰) in Yelkouan 
shearwater nestling and fledgling 
feathers sampled in three breeding 
seasons (2020–2022). Error bars 
(mean ± standard deviation) are 
presented per site where RM, CM, 
SP and MJ are colonies and ‘Sea’ 
and ‘Urban’ are fledglings rescued 
on failed fledgling either at sea or 
grounded in urban areas

 

Fig. 2  δ15N (‰) and δ13C (‰) in 
Yelkouan shearwater nestling and 
fledgling feathers sampled in three 
breeding seasons (2020–2022), 
and error bars (mean ± standard 
deviation) per site where RM, CM, 
SP and MJ are colonies and ‘Sea’ 
and ‘Urban’ are fledglings rescued 
on failed fledgling either at sea or 
grounded in urban areas
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Fig. 5  Feather corticosterone 
(CORTf pg mm−1) and stable 
isotope values of nitrogen (δ15N 
‰) in Yelkouan shearwater chicks 
ready to fledge from colonies 
(N = 53), compared to fledglings 
with failed fledging, which were 
either found at sea unable to fly 
(N = 9) or grounded in urban areas 
(N = 19). δ15N and CORTf were 
measured in three breeding seasons 
(2020–2022). The central mid-line 
in each boxplot corresponds to the 
median, the lower and upper hori-
zontal lines to the first and third 
quartiles and the vertical whiskers 
extend to the values at 1.5 of the 
inter-quartile range

 

Fig. 4  Hg (µg g−1 dry weight) 
against δ13C (‰) and δ15N (‰) in 
Yelkouan shearwater nestling and 
fledgling feathers collected in one 
breeding season (2022). Error bars 
(mean ± standard deviation) are 
presented per site where RM, CM, 
SP and MJ are colonies and ‘Sea’ 
and ‘Urban’ are fledglings rescued 
on failed fledgling either at sea or 
grounded in urban areas
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Differences in foraging ecology

We obtained 146 trips by 67 individual shearwaters during 
the chick-rearing periods of 2012–2014, 2019, 2021–2022 
(MJ = 42 trips, 27 individuals; RM = 104 trips, 40 individu-
als). Representativeness of tracked shearwaters per colony 
was high, calculated at 84.7% for MJ and at 90.4% for RM, 
showing that with the sample size of tracked individuals, we 
captured most of the variation in foraging areas used by the 
population. Overlap in area used by shearwaters from both 
colonies was estimated at 24.08% (Fig. 7).

After removing trips with missing outward or return 
portions, 122 trips (MJ = 35, RM = 87) of 53 individuals 
remained for calculation of trip metrics. Here we pres-
ent means ± SD per colony, while parameter estimates for 
GLMMs are presented in Table S4. Shearwaters breeding at 
MJ made longer trips both in duration (MJ 73.5 ± 62.59 h, 
RM 50.94 ± 61.32 h) and distance (MJ 694.96 ± 483.03 km, 
RM 480.75 ± 479.25 km), travelled further away from the 
colony (MJ 237.93 ± 142.05 km, RM 158.99 ± 128.10 km), 
but were not faster (MJ 11.23 ± 4.47  km hr−1, RM 
11.36 ± 4.49 km hr−1) than shearwaters at RM. Results from 
2021 alone show the same differences in colony foraging 
strategies (Table S5, Fig. S5).

Colony – Urban = −0.351 ± 0.117, P = 0.010, residual d.f. = 
75; Fig. 5; Table S2), compared to chicks in the colonies.

Adult breeding success at colonies

Apparent adult breeding success ranged from 31% to 87% 
and varied between colonies and years (Table S3). MJ had 
lower DSR estimates than all the other colonies (Tukey 
post hoc estimates ± SE for: RM – MJ = 1.552 ± 0.145, 
P < 0.001, residual d.f. = 6; MJ – SP = −1.628 ± 0.145, 
P < 0.001, residual d.f. = 6; MJ – CM = −0.823 ± 0.145, 
P = 0.005, residual d.f. = 6; Fig. S4), while RM had also 
higher DSR than CM (Tukey post hoc test estimate ± SE for 
RM – CM = 0.728 ± 0.145, P = 0.009, residual d.f. = 6), but 
not higher than SP (Tukey post hoc test estimate ± SE for 
RM – SP = −0.076 ± 0.145, P = 0.951, residual d.f. = 6). We 
found evidence that provisioning conditions affect breeding 
success at the colony level. Mean CORTf had an inverse 
relationship with DSR (GLMM parameter estimate ± SE = 
−0.319 ± 0.078, P < 0.001, residual d.f. = 5, Fig. 6; Table S2), 
while δ15N had a positive relationship with DSR (GLMM 
parameter estimate ± SE = 1.012 ± 0.129, P < 0.001, residual 
d.f. =5; Fig. 6; Table S2).

Fig. 6  Yelkouan shearwater daily 
nest survival rate estimates (DSR) 
per colony (RM, MJ, SP and CM) 
and year, as explained by mean 
feather corticosterone (CORTf) and 
mean δ15N in shearwater chicks in 
the respective colonies
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to determine (Kitaysky et al. 2001, 2005). Additional fac-
tors might also induce changes in physiological response 
in seabirds, such as microclimate (Lamb et al. 2016), other 
pollutants (Tartu et al. 2015), social density (Herring et al. 
2012) and ectoparasites (Kitaysky et al. 2001). In this study, 
we did not find support for Hg exposure affecting CORTf.

As expected, Hg was positively correlated with δ15N in 
young shearwaters (Hypothesis 1), due to biomagnifica-
tion of Hg up trophic webs (Goutte et al. 2014; Binkowski 
et al. 2021). Concentrations of Hg found in the feathers of 
Maltese shearwaters were within the range found in stud-
ies on seabird chicks in general, but higher than in chicks 
from most sampled Procellariidae (Blévin et al. 2013). Hg 
concentrations measured in this study are unlikely to have 
strong adverse health effects (values within “no risk” and 
“low risk” categories according to Chastel et al. (2022). 
However, Hg might still have a negative effect on chick 
growth rate (Amélineau et al. 2019; Bertram et al. 2025) 
and breeding success (Goutte et al. 2014; Tartu et al. 2015). 
More years of Hg measurements, in both chicks and adults 
but also eggshells (Bertram et al. 2025), are needed to 
understand the effect of Hg on breeding success of the study 
species.

Furthermore, rearing conditions affect fledging success 
by which fledglings which failed the first fledging attempt 
particularly had higher CORTf (Hypothesis 2). Following 
predictions, young shearwaters that were rescued at sea had 
the highest CORTf, higher than chicks in colonies and those 

Discussion

We retrospectively investigated natal conditions in shear-
water nestlings using feathers grown during the nest-bound 
life stage prior to fledging. Trophic ecology influenced cor-
ticosterone levels in young shearwaters in inverse relation-
ships between both δ15N and δ13C with CORTf. Since higher 
δ15N reflects foraging up the food chain and an indication of 
higher diet quality (Fairhurst et al. 2014; Pollet et al. 2014), 
but also larger provisioning quantity (Williams et al. 2007), 
the inverse relationship between δ15N and CORTf indicates 
a response to sub-optimal provisioning during the chick-
rearing period (Hypothesis 1). The inverse relationship also 
found between δ13C and CORTf as well as the strong posi-
tive relationship between δ15N and δ13C indicates that spa-
tial differences in foraging areas might affect provisioning 
quality (Hipfner et al. 2007). By combining CORTf and sta-
ble isotope values we show a physiological response, albeit 
a moderate one, to diet and food provisioning, the inverse 
relationship being an indication of nutritional stress in sev-
eral of the shearwater chicks (Fairhurst et al. 2014; Will et 
al. 2015). We cannot exclude that CORTf was suppressed in 
some chicks to prevent detrimental effects of chronic ele-
vated CORT (Kitaysky et al. 2001; Fairhurst et al. 2012b). 
Suppression processes are species specific and probably 
occur in phases dependent on severity and duration of food 
shortages, which require experimentally controlled setups 

Fig. 7  Overlap in 50% utilisa-
tion distributions (UDs) of adult 
Yelkouan shearwaters from two 
colonies (RM, MJ) on Malta during 
the chick-rearing period, based on 
GPS-tracks from 2012–2014, 2019, 
2021–2022. Study site is marked 
with a yellow star. Base map 
source: Google.com
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addition to predator control and grounded shearwater res-
cue. Moreover, fledgling tracking studies (Raine et al. 2020) 
should additionally incorporate CORTf and stable isotope 
measurements to increase understanding of differences in 
fledging survival.

The measures of rearing conditions in nestlings also 
explain nest survival rates and indicate that differences 
in provisioning conditions contribute to the discrepancy 
in adult breeding success between colonies. As expected, 
higher CORTf and lower δ15N in nestlings were associated 
with lower DSR (Hypothesis 3; Fig. 6). We measured pro-
visioning retrospectively in nestlings with grown feathers 
but were unable to measure provisioning experienced by 
chicks that died before feather growth. Based on our results, 
we suggest that the same processes leading to nutritional 
stress in grown chicks might cause failure in nests at an 
earlier stage. The differences in breeding success between 
colonies, particularly the lower rates at MJ, sustained over 
several years, are likely substantial enough to drive popula-
tion decline and merit demographic modelling (Tinker et al. 
2022). On the other hand, and unlike Lago et al. (2019), we 
did not find a difference between breeding success at RM 
and SP, meaning that rodent control has a positive impact, 
especially in the absence of contrasting provisioning in 
shearwaters.

Compared to RM, nest survival rates were lower at MJ, 
where nestlings also had lower δ15N. Following predictions, 
tracked adults at MJ made longer trips and had low spatial 
overlap in foraging areas with RM shearwaters (Hypoth-
esis 4). Similar to the comparison in foraging trip length 
at RM and MJ colonies, other adult seabirds in colonies 
where foraging trip distance was longer or in areas with 
poorer conditions, had slightly lower survival (Horswill 
et al. 2023), lower breeding success (Hipfner et al. 2007; 
Fayet et al. 2021) and nestlings with higher CORTf levels 
(Whitehead et al. 2022). In addition to the longer foraging 
trips in MJ adult shearwaters, provisioning frequency at the 
colony is potentially also affected by distinct light pollution 
events from bunkering ships during which adult shearwaters 
reduced colony attendance by an hourly mean of 18 ± 24% 
(Austad et al. 2023). Further study is needed to differenti-
ate between the effects of provisioning quality, quantity and 
frequency (Cherel et al. 2005; Williams et al. 2007; Sears 
et al. 2009) on δ15N measured in feathers within our study 
system. Moreover, while δ15N is an indicative measure of 
diet quality (Pollet et al. 2014), it could be complimented 
by other measures such as energetic content (Wanless et al. 
2005; Lamb et al. 2016) and essential fatty acids (Santos et 
al. 2023; Laranjeiro et al. 2025). Future research needs to 
account for nest microclimate due to effects on chick physi-
ology (Fairhurst et al. 2012a; Lamb et al. 2016; Casagrande 
and Dell’Omo 2025).

grounded in urban areas. However, δ15N was not found to 
be different, which contradicts our predictions. In our study, 
we are unable to quantify the food deprivation nestlings 
experienced. However, protein catabolism likely occurred 
in chicks with poor or absent lipid reserves, a process which 
would have been induced by high corticosterone levels 
(Kitaysky et al. 2001). While lower δ15N can be expected in 
chicks with moderate food restriction (Williams et al. 2007), 
in chronic food restriction resulting in protein catabolism, 
δ15N is enriched, obscuring trophic level effects (Cherel 
et al. 2005; Hatch 2012). Therefore, we suggest that these 
shearwaters found at sea might have experienced the most 
extreme nutritional stress.

Contrary to our predictions, grounded fledglings in 
urban areas were found to have higher CORTf and lower 
δ15N than the other chicks (Hypothesis 2). Disproportion-
ally higher nutritional stress during the rearing period would 
not be expected in grounded fledglings if all fledglings were 
equally attracted by light pollution on their first flight and 
grounded irrespective of their fledging conditions. There-
fore, our results indicate that grounding might be affected 
by other and so far, under-documented processes linked to 
rearing conditions (Brown et al. 2022). One of them might 
be the time young shearwaters are able to train their wings 
before first flight. Training wings outside burrows is thought 
to be crucial for successful fledging, and heavier and faster 
growing nestlings spent more time training (Yoda et al. 
2017). Moreover, fledglings should reach optimal wing 
load for a successful first flight, but fledglings in poor con-
dition and elevated CORT might leave before wings are 
completely grown (Sprague and Breuner 2010). Through 
tracking rescued fledglings, it has been shown that the prob-
ability of re-grounding by light pollution was higher if birds 
flew slower and in a circling fashion, but also if proportion 
of down plumage, an indication of pre-mature fledging, was 
higher (Rodríguez et al. 2022). Therefore, it is possible that 
poor provisioning leading to higher CORT triggers fledging 
prior to optimal flight efficiency being reached (Quillfeldt et 
al. 2010; Sprague and Breuner 2010). Early fledging would 
make young shearwaters more prone to collision or exhaus-
tion during first flight, especially during light attraction at 
urban areas.

Some of the shearwaters in colonies had similarly high 
CORTf and low δ15N values to those of fledglings that failed 
fledging (Fig. 5), and it is likely that a larger proportion of 
fledglings than those rescued failed their first flight from the 
colony. In fact, only a small proportion of grounded seabirds 
are thought to be found and rescued, especially for smaller 
species and in campaigns dependent on volunteers and pub-
lic awareness (Rodríguez et al. 2017a; Brown et al. 2022). 
The higher proportion of fledglings potentially failing at 
first flight urgently calls on other conservation measures in 
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