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Abstract
Mercury (Hg) pollution is a global problem affecting remote areas of the open ocean, but the bioaccumulation of this
neurotoxic pollutant in tropical top predators remains poorly documented. The objective of this study was to determine Hg
contamination of the seabird community nesting on Clipperton Island using blood and feathers to investigate short and
longer-term contamination, respectively. We examined the significance of various factors (species, sex, feeding habitat
[δ13C] and trophic position [δ15N]) on Hg concentrations in six seabird species. Among species, Great Frigatebirds had the
highest Hg concentrations in blood and feathers, boobies had intermediate values, and Brown Noddies and Sooty Terns the
lowest. At the interspecific level, although δ13C values segregated boobies from frigatebirds and noddies/terns, Hg
concentrations were explained by neither δ13C nor δ15N values. At the intraspecific level, both Hg concentrations in blood
and feathers show relatively small variations (16–32 and 26–74%, respectively), suggesting that feeding ecology had low
seasonal variation among individuals. Despite most species being sexually dimorphic, differences in Hg contamination
according to sex was detected only in Brown Boobies during the breeding period. Indeed, female Brown Boobies feed at a
higher trophic level and in a different area than males during this period, resulting in higher blood Hg concentrations. The
present study also shows that most of the seabirds sampled at Clipperton Island had little or no exposure to Hg toxicity, with
30% in the no risk category and 70% in the low risk category.
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Introduction

Due to its atmospheric residence time of up to a year
(Schroeder and Munthe 1998, Sprovieri et al. 2010), mer-
cury (Hg) is dispersed by atmospheric currents at the global
scale and deposited in all ecosystems. As a consequence,

extremely remote areas, including the open ocean, are
contaminated by this ubiquitous pollutant (Fitzgerald et al.
1998), and compared to pre-industrial times, Hg con-
centrations in marine surface waters have tripled (Lamborg
et al. 2014). Once deposited in the sea, Hg is subject to
methylation by microorganisms (e.g., Benoit et al. 2002,
Gilmour et al. 2013, Yu et al. 2013, Hsu-kim et al. 2013),
resulting in the production of methylmercury (MeHg). Due
to its high assimilation efficiency and high affinity for
proteins, MeHg bioaccumulates in marine organisms (con-
centrations increase over time in their tissues) and bio-
magnifies in the food chain (concentrations increase at each
trophic level) up to apex predators, resulting in elevated
concentrations in top predators, such as fish, seabirds, and
marine mammals (Eagles-Smith et al. 2018). Thus, long-
lived marine top predators exhibit highly elevated con-
centrations of Hg in their tissues (e.g., Muirhead and Fur-
ness 1988, Stewart et al. 1999, Renedo et al. 2021a).

The strong toxicity of MeHg poses a problem for all living
organisms, with neurological, physiological, immunological,
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and behavioural impacts reported in vertebrates (Tan et al.
2009, Wolfe et al. 1998, Evers 2018). In seabirds, Hg may
affect fundamental fitness traits, such as reproduction and
lifespan (e.g., Whitney and Cristol 2017, Tartu et al. 2015),
with negative consequences at the population level (Evers
et al. 2008, Goutte et al. 2014a, b). Due to their elevated
position in marine food webs, seabirds are prone to accu-
mulate high levels of Hg, which can have harmful effects.
Seabirds are also considered as relevant bioindicators of Hg
contamination of marine ecosystems (e.g., Furness and
Camphuysen 1997, Monteiro and Furness 1995). They are
usefull organisms to investigate Hg availability in the open
ocean marine food webs (e.g., Albert et al. 2019, Carravieri
et al. 2017). Therefore, they are particularly relevant to
monitor remote areas where Hg is only documented during
oceanographic cruises, along shipping lanes, or at research
stations –leaving many areas of the ocean without data (Cossa
et al. 2011, Hammerschmidt and Bowman 2012).

By combining the analysis of Hg in different tissues of
seabirds, like blood and feathers which allow non-lethal
sampling, local and large-scale contamination by Hg can be
documented (e.g., Cherel et al. 2018, Pollet et al. 2022). The
half-life of Hg in blood is in the range of a few weeks,
therefore, it provides information on short-term Hg expo-
sure (weeks to months), allowing the assessment of local
contamination around the colonies (Monteiro and Furness
2001). Conversely, Hg concentrations in feathers of adult
individuals are commonly considered to indicate integrated
accumulation between two successive moults, i.e., long-
term exposure encompassing the year-long foraging range
of birds (Braune and Gaskin 1987, Burger 1993).

Food is the main route for Hg exposure in seabirds (Burger
and Gochfeld 2004, Atwell et al. 1998), and trophic ecology
(i.e., feeding habitat and diet) represents a major driver of
intra- and inter-specific variations of Hg concentrations
(Bearhop et al. 2000, Anderson et al. 2009, Carravieri et al.
2014a). Hence, the use of seabirds to investigate the con-
tamination of water masses by Hg requires knowledge of their
trophic ecology, whether by direct methods, such as biolog-
ging that allows determining precisely their feeding areas, or
by indirect methods, such as the use of trophic tracers (stable
isotopes of carbon and nitrogen) that provide information on
their foraging habitat and trophic position, respectively
(Hobson et al. 1994, Fort et al. 2014).

In this study, we investigated blood and feather Hg
concentrations from six seabird species breeding on Clip-
perton Island, a remote atoll in the eastern tropical Pacific
Ocean, being more than 1000 km from Mexico and more
than 5000 km from Hawaii. We used δ13C and δ15N values
in both tissues as trophic tracers of the foraging habitat and
trophic position of birds during breeding, and outside the
breeding period, respectively (Cherel et al. 2008). Blood
and feathers from adults were used to investigate intra- and

inter-specific differences in Hg exposure, and to assess the
contamination of the area at local (blood Hg) and regional
(feather Hg) scales. As most seabird species considered in
this study show sexual dimorphism with potential foraging
segregation between males and females (e.g., Brown
Booby; Mancini et al. 2023), sexes were considered sepa-
rately in order to determine if the different foraging strate-
gies between sexes is reflected in Hg concentrations in the
short- (blood) and long-term (feathers). Specifically, we
tested the following hypotheses: (i) stable isotope values of
tropical seabirds will show significant variation as a result
of variable primary production around the Clipperton Atoll
(Willett et al. 2006) despite a relatively poor diversity of
tropical seabird foraging methods and prey diversity; (ii)
blood and feather Hg concentrations are expected to reflect
ecological segregation between species with those having
the highest δ15N values exhibiting the highest Hg con-
centrations ; and (iii) species showing sexual dimorphism
are expected to exhibit different Hg concentrations between
males and females as a result of expected sexual differences
in foraging strategies.

Materials and methods

Study site and sampling procedure

Fieldwork was carried out at Clipperton Island (10.3°N,
109.2°W) in the central eastern Pacific (Fig. 1) in
January–March, 2005. Clipperton Island is the only coral
atoll in the eastern Pacific, with a circular ring-shaped
aspect, roughly 3 km in diameter and 100–300 m wide. The
island is uninhabited, and constitutes the nesting place for
thousands of seabirds of 13 different species (Weimerskirch
et al. 2009). Notably, it holds the largest Masked Booby
Sula dactylatra colony in the world, with ~120,000 breed-
ing individuals (Pitman et al. 2005).

Six species were sampled: the Masked Booby (n= 24),
Brown Booby (Sula leucogaster; n= 20), Red-footed
Booby (Sula sula; n= 20), Great Frigatebird (Fregata
minor; n= 9), Sooty Tern (Onychoprion fuscata; n= 10),
and Brown Noddy (Anous stolidus; n= 6). For each indi-
vidual, a blood sample (~1 ml) was taken from the brachial
vein with a heparinized syringe, and stored in a 1.5 mL
Eppendorf tube with 70% ethanol. Sections of the second-
ary flight feathers N°1 to 3 (two to three per individual)
were collected and stored in individual plastic bags for
subsequent laboratory analysis.

Molecular sexing

Molecular sexing was conducted at the Centre d’Etudes
Biologiques de Chizé (CEBC), France. Birds were sexed
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from whole blood by polymerase chain reaction amplifica-
tion of part of two highly conserved genes (CHD) present in
sexual chromosomes, as described in Fridolfsson and
Ellegren (1999).

Mercury and stable isotope analyses

Total Hg and isotopic analyses were carried out on whole
blood and feathers at the Littoral, Environment and Socie-
ties (LIENSs) laboratory. After evaporating the ethanol at
room temperature under a fume hood, blood was freeze-
dried and homogenised prior to its analyses. Feathers were
washed twice with a mixture of chloroform: methanol (2:1)
to remove dirt and contaminants, rinsed in methanol and
then dried at 45°C for 48 h. The dried feathers were then cut
into very fine pieces with stainless steel scissors. For each
individual, feathers were pooled and homogenised together
in order to provide integrated Hg and isotopic values
(Carravieri et al. 2014b).

Aliquots weighing between 1.4 and 4.8mg for blood and
0.8 and 2.6mg for feathers were analysed for Hg quantification
with an Altec AMA 254 spectrophotometer, as described in
Chouvelon et al. (2009). All analyses were carried out in
duplicates or triplicates until having a relative standard devia-
tion <10%. Blanks and Certified reference material (CRM)
DOLT-5 (Dogfish liver, NRC, Canada; certified Hg con-
centration: 0.44 ± 0.18 µg g−1 dry weight) were measured all
along the analytical sets (at the beginning and the end of each
set, and every 10 samples). The CRM mass was adjusted to get
similar amounts of Hg as in the samples. Our results for CRM
were in good agreement with the certified values with

recoveries of 98.3 ± 0.7%. The limit of detection of the AMA
was 0.1 ng. Results for Hg are further presented in µg g−1

relatively to the dry weight (dw).
Blood isotopic values are representative of the diet dur-

ing the 3–4 weeks preceding sampling (Bearhop et al.
2002), while those in feathers correspond to exposure dur-
ing foraging at the time of their synthesis (Cherel et al.
2018). From 0.2 to 0.5 mg of blood and feather aliquots
were packed in a tin cup for isotopic analyses, respectively.
Carbon and nitrogen stable isotope values (δ13C and δ15N)
were determined with a continuous flow mass spectrometer
(Thermo Scientific Delta V Advantage) coupled to an ele-
mental analyser (Thermo Scientific Flash EA 1112). Iso-
topic data were defined by following equation:

δ15N or δ13C mð Þ ¼ Rsample=Rstandard

� �� 1
� �� 1000

where R is 15N/14N or 13C/12C. Results are presented in δ
notation relative to Vienna PeeDee Belemnite and atmo-
spheric N2 (air) for carbon and nitrogen, respectively.
Internal laboratory standards (USGS-61 and USGS-63)
were used to check accuracy. Measurement errors were
<0.15 ‰ for both δ13C and δ15N values.

Statistical analyses

Statistical analyses were performed with R (R Studio, Inc;
version 1.0.153). First, the normality of the data was examined
via a Shapiro-Wilk test. Measurements of Hg as a response
variable did not show a normal distribution, thus, nonpara-
metric Kruskal-Wallis tests were performed. For all tests, the

Fig. 1 Clipperton Island in the
eastern tropical Pacific Ocean
(adapted from Pitman et al.
2012)
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significance level was set at the threshold of α= 0.05. Values
are presented as means ± standard deviation (SD).

Results

Inter- and intra-specific variations of Hg and stable
isotopes

Mercury and stable isotopes have been measured in 84
blood and 89 feather samples from seabirds breeding on
Clipperton Island. In blood, Hg concentrations varied sig-
nificantly among species, ranging from an average con-
centration of 0.36 ± 0.11 µg g−1 dw in the Brown Noddy to
2.42 ± 0.49 µg g−1 dw in the Great Frigatebird (Table 1,
Fig. 2). Across species, blood Hg concentrations showed
relatively low variations at the species level, with coefficient
of variations of 16% in the Masked Booby to 32% in the
Brown Noddy. In feathers, Hg concentrations were sig-
nificantly higher than in blood, but with a narrower range of
values at the interspecific scale and a higher variation at the
specific scale (Fig. 2). Thus, the Sooty Tern had the lowest
average feather Hg concentrations with 1.50 ± 1.10 µg g−1

dw, and the Great Frigatebird had the highest with
4.50 ± 2.50 µg g−1 dw (Table S1). Coefficients of variation
regarding feather Hg concentrations varied from 26% in the
Masked Booby to 74% in the Sooty Tern. Despite this
higher variation than in blood, there was a significant cor-
relation between Hg concentrations in blood and in feathers
(Pearson, r= 0.46; df= 80; p < 0.001).

Blood and feather δ13C and δ15N values revealed that the
six sympatric seabird species from Clipperton Island were
segregated by their overall isotopic values (Fig. 3). Thus,
δ13C values in the blood and feathers separated the three
species of boobies from the other species, with boobies
having average δ13C values ≥−17.0 and −15.8 ‰ in blood
and feathers, respectively. The species were not segregated
by δ15N values in blood and feathers (Fig. 3), and boobies
showed small variation in δ15N values (coefficients of var-
iation <2%) compared to the other species (coefficients of
variation variyng from 7% in the Great Frigatebird to 16%
in the Sooty Tern).

Sex-related variations of Hg and stable isotopes

There was no significant sex-related difference in blood and
feather Hg concentrations in seabirds from Clipperton
Island, with the exception of the Brown Booby for blood
(Fig. S1). In this species, females had higher blood Hg
concentrations (1.25 ± 0.20 µg g−1 dw) than males
(0.81 ± 0.08 µg g−1 dw; Table 1, Fig. 4). Females also had
significant higher δ13C and δ15N values than males in blood,
but no significant difference was found in feathers (Fig. 5).

Discussion

This study investigates for the first time concentrations of
Hg in a suite of seabirds breeding on Clipperton Island.
The measurement of Hg in blood and feathers in this

Table 1 Blood Hg concentration
and stable isotope values in
males and females of six seabird
species on the Clipperton Island

n Blood Hg (µg g−1 dw) Blood δ13C (‰) Blood δ15N (‰)

Brown Booby (Sula leucogaster) 20 1.03 ± 0.27 −16.99 ± 0.17 14.60 ± 0.21

Males 10 0.81 ± 0.08 −17.10 ± 0.14 14.44 ± 0.15

Females 10 1.25 ± 0.20 −16.87 ± 0.12 14.76 ± 0.10

Masked Booby (Sula dactylatra) 20 1.67 ± 0.27 −16.75 ± 0.14 14.94 ± 0.14

Males 10 1.56 ± 0.23 −16.81 ± 0.14 14.84 ± 0.11

Females 10 1.78 ± 0.28 −16.70 ± 0.13 15.04 ± 0.10

Red-footed Booby (Sula sula) 20 1.47 ± 0.26 −17.02 ± 0.10 14.78 ± 0.10

Males 11 1.41 ± 0.26 −17.02 ± 0.10 14.82 ± 0.09

Females 9 1.55 ± 0.25 −17.02 ± 0.10 14.72 ± 0.07

Great Frigatebird (Fregata minor) 9 2.42 ± 0.49 −17.37 ± 0.13 15.01 ± 0.36

Males 5 2.67 ± 0.48 −17.47 ± 0.06 14.85 ± 0.39

Females 4 2.10 ± 0.28 −17.24 ± 0.08 15.22 ± 0.19

Brown Noddy (Anous stolidus) 5 0.36 ± 0.11 −17.50 ± 0.18 14.50 ± 0.16

Males 2 0.41 ± 0.19 −17.52 ± 0.36 14.43 ± 0.24

Females 3 0.32 ± 0.06 −17.49 ± 0.06 14.55 ± 0.11

Sooty Tern (Onychoprion fuscatus) 10 0.62 ± 0.14 −17.31 ± 0.54 14.91 ± 0.27

Males 6 0.66 ± 0.14 −17.40 ± 0.15 15.04 ± 0.10

Females 4 0.56 ± 0.14 −17.18 ± 0.89 14.71 ± 0.34

Values are means ± SD
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seabird community provides a valuable opportunity to
study the Hg availability in oceanic waters exploited by
species with different trophic ecologies. This appears
particularly relevant in the context of the evaluation of the
effectiveness of the Minamata Convention, which aims to
document Hg contamination at large spatio-temporal scale
(Evers et al. 2016, Gustin et al. 2016). The use of bioin-
dicators, such as seabirds, to assess and monitor Hg con-
centrations in the environment is particularly suitable for
large-scale spatial and long-term monitoring (Furness and
Camphuysen 1997).

Tissue Hg concentrations in Clipperton Island seabirds
were similar to those of other tropical birds, but lower than
those of subantarctic birds, such as skuas, albatrosses, and
petrels (e.g., Becker et al. 2002, Anderson et al. 2009,
Carravieri et al. 2014a). More specifically, on Clipperton
Island, we found a relatively small intraspecific variation in
blood and feather Hg concentrations depending on different
explanatory factors (species, trophic ecology, sex). No dif-
ferences in blood and feather Hg concentrations was found
between males and females, with the exception of blood in
the Brown Booby, reflecting sexual segregation in trophic
ecology in this species over the short-term. Concerning the
risks associated with Hg contamination, most species were

at no or low risk of Hg toxicity (Ackerman et al. 2016,
Chastel et al. 2022).

Most studies that have measured Hg concentrations in
seabird feathers have focused on body feathers, which have
the advantage that they are easy to collect and they can be
pooled to obtain an average value with a reduced variability
(Carravieri et al. 2014b, Peterson et al. 2019). Body feathers
reflect long-term contamination to Hg, typically one year in
most species (Braune and Gaskin 1987, Burger 1993). In
studies on Hg in the feathers of tropical birds, body feathers
have also been the main focus, although flight feathers have
been considered and compared with body feathers in a few
cases (e.g., Bighetti et al. 2022). In seabirds overall,
depending on the moult pattern, flight feathers may have
lower (moulted after body feathers; Braune and Gaskin
1987) or higher (moulted before body feathers; Furness
et al. 1986) Hg concentrations. Due to the lack of infor-
mation on the moulting patterns in most of the species from
the Clipperton Island community, it is difficult to compare
Hg concentrations in flight feathers obtained in this study
with those from other sites involving other feather types
(i.e., body feathers). Nevertheless, these concentrations
appear higher than those reported in the tropical seabird
communities from the western Indian Ocean, which showed
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Fig. 2 Inter-specific variations
of Hg concentration in blood (A)
and feathers (B) from six
seabirds breeding at the
Clipperton Island. Species are
presented according to
taxonomic groups: Fregatidae
(white), Sulidae (black) and
Laridae (grey). Species sharing
the same letter are not
statistically different (Kruskal-
Wallis, p < 0.05)
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lower feather Hg concentrations (from 0.05 to 1.5 µg g−1

dw; Catry et al. 2008; Kojadinovic et al. 2007) than at
Clipperton Island (from 1.50 to 4.60 µg g−1 dw; Table S1).
In the nearby Galápagos Islands, several identical or closely
related species, including two frigatebirds and three boo-
bies, showed higher feather Hg concentrations than the
Clipperton community (i.e., between 5.23 and 7.32 µg g−1

dw for the Great Frigatebird, and between 6.25 and
9.80 µg g−1 dw for the Red-footed Booby; Zarn et al. 2020).
In addition, there was no difference in feather Hg con-
centrations between frigatebirds and boobies in the Galá-
pagos Islands, unlike in our study. Interestingly, δ13C
values between Great Frigatebirds and Red-footed boobies
were in the same range in the Galápagos, suggesting that
there is no segregation in feeding habitats between these
two species (see discussion below on this aspect). The
timing of plumage moult therefore appears to be a key
element to consider for comparing data between sites and
between species (Albert et al. 2019). It would be useful to
use chick feathers to monitor Hg in future investigations, as
chick feathers reflect Hg contamination over a shorter per-
iod of time, i.e., the chick-rearing period (Blévin et al.
2013).

In contrast to feathers, information provided by blood
allow a direct comparison of Hg levels in seabirds from the
Clipperton Island community with those from other sites

(Table 2). Blood Hg concentrations in the present study are
in line with other works on the same or closely-related
species, with the Laridae having the lowest concentrations,
Sulidae intermediate values, and Fregatidae the highest
levels. This general trend is affected by local conditions and
diet, however. For example, the Peruvian Booby breeding
on Pescadores Island had low blood Hg concentrations as
they primarily forage on anchovies (Barbraud et al. 2018),
which display low Hg concentrations as a result of biodi-
lution in the very high biomass in the Humboldt Current (Le
Croizier et al. 2022). A review of literature reveals that very
high concentrations of Hg have been reported in the blood
of Sooty Terns from the Dry Tortugas in Florida. These
values are unexpected and merit further investigation at the
seabird community level to determine if the Laridae
< Sulidae < Fregatidae pattern is verified, or if high blood
Hg concentrations in the Sooty Tern is linked to its feeding
ecology in the area.

The biomagnification process illustrates why diet is one
of the main factors explaining Hg contamination in top
consumers, including seabirds (Monteiro et al. 1998,
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Stewart et al. 1999, Carravieria et al. 2014a). Seabirds at
Clipperton Island feed in flocks, depending on schools of
dolphins and tuna to drive their prey to the surface waters
(Au and Pitman 1986). In this tropical region, flocks of
Sooty Tern forage in areas of low productivity, whereas
flocks of boobies forage in areas of high productivity, which
can be explained by differential energetic costs of flight and
competition (Ballance et al. 1997). These different pro-
ductivity zones should have different isotopic values and
also different Hg concentrations. A zone of high production
occurred near Clipperton Island every year from January to
March, coinciding with the reproductive peak of most
seabird species (Willett et al. 2006, Weimerskirch et al.
2008). While most tropical seabirds reproduce all year long
(Nelson 1978), a relative synchronicity is at work at Clip-
perton Island. This is particularly the case for Masked
Boobies, which represent the most numerous seabird spe-
cies on the atoll (Pitman et al. 2005). In this region of the
Pacific Ocean, Hg concentrations in seabirds may vary
because of the productivity which is influenced by climatic

events such as El Niño/La Niña Southern Oscillations
(ENSO). ENSO was shown to shift isotopic baselines in the
Humboldt Current food web, but without any detected
effect on Hg exposure of seabirds (Renedo et al. 2021b).
Fishing pressure is another factor that can affect Hg con-
centrations in seabirds. Indeed, the catch of large predators,
such as tunas, may reduce the accessibility of prey for some
surface-feeding seabirds, such as the Sooty Tern. In the
south tropical Atlantic Ocean, the population of Sooty Terns
nesting on Ascension Island dramatically decreased
between the 1940s and the 1970s (by 84%, from 3.32
million birds in 1958, to 350,000 individuals in 2013), and
feather analysis of stable isotopes in museum and con-
temporary specimens over a period of 140 years showed a
shift in Sooty Tern diet as a result of industrial tuna fisheries
(Reynolds et al. 2019). Such a dietary change caused a 59%
increase in Sooty Tern feather Hg concentrations, from
1.2 µg g−1 in 1920 to 2.0 µg g−1 in 2020 (Cusset et al.
2023).

At the scale of a seabird community, stable isotopes
represent a useful approach to investigate food partitioning
between species (Hobson et al. 1994, Cherel and Carrouée
2022). Although isotopic differences were small among
Clipperton Island seabirds (Fig. 2), δ13C values separated
two groups—the Laridae and Fregatidae, and the Sulidae.
This δ13C segregation in two different groups occurred both
in the short term (i.e., during the breeding period [blood
values]) and in the long term (i.e., outside the period
[feather values]). Such a segregation is not reflected in
blood nor feather Hg concentrations, as the first group
showed both the lowest (Sooty Tern and Brown Noddy) and
highest Hg concentrations (Great Frigatebird; Fig. 1).
Sebastiano et al. (2017) also reported that Magnificent
Frigatebirds sampled during the breeding period had the
highest blood Hg concentrations, and Sooty Terns the
lowest, amongst six seabird species breeding in French
Guiana. These authors showed that such elevated blood Hg
concentrations were mainly explained by Hg biomagnifi-
cation reflected by the highest δ15N values of frigatebirds.
Such a difference in δ15N is not apparent in the Clipperton
Island seabird community, suggesting that factors other than
trophic position influence the contamination of seabirds in
the short- (blood) and long-term (feathers). Further studies
should consider Hg isotopic composition of both tissues to
assess the dietary origin of MeHg contamination (Renedo
et al. 2018, Le Croizier et al. 2020). For instance, blood
Δ199Hg values were higher in feathers than in blood of
Arctic seabirds, which reflects seasonal dietary changes and
different integration times for MeHg exposure between
tissues (Renedo et al. 2020).

Most seabird species from Clipperton Island are sexually
dimorphic (Chardine and Morris 1989, Dearborn et al.
2001, Weimerskirch et al. 2006 2009). This is interpreted as
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an adaptation to intraspecific competition, which expands
the trophic niche of the species (Phillips et al. 2011,
Giménez et al. 2021, Mancini et al. 2013, 2023). Contrary
to our predictions, isotopic values and Hg concentrations

were not different in blood or feathers of males and females.
The Brown Booby is nevertheless an exception since it
showed that sexes have different blood stable isotope values
and Hg concentrations. In this species, females are larger

Table 2 Review of blood Hg concentration of adult Sulidae, Fregatidae and Laridae from the intertropical area

Family and species Site Year n Blood Hg (µg g−1 dw) Reference

Sulidae

Brown Booby (Sula leucogaster) Clipperton Atoll 2005 20 1.03 ± 0.27 This study

Santana Archipelago 2018 40 2.68 ± 0.78 Bighetti et al. (2021)

Palmyra Atoll 2009–2014 10 2.49 ± 1.05 Gilmour et al. (2019)

Masked Booby (Sula dactylatra) Clipperton Atoll 2005 20 1.67 ± 0.27 This study

Layssan Island 2009–2014 3 1.82 ± 0.91 Gilmour et al. (2019)

Tern Island 2009–2014 14 1.96 ± 1.25 Gilmour et al. (2019)

Red-footed Booby (Sula sula) Clipperton Atoll 2005 20 1.47 ± 0.26 This study

New Caledonia 2015 7 0.92 ± 0.13 Le Croizier et al. (2022)

Brazil 2015 60 2.66 ± 1.61 Le Croizier et al. (2022)

Layssan Island 2009–2014 4 0.53 ± 0.01 Gilmour et al. (2019)

Tern Island 2009–2014 8 2.16 ± 0.43 Gilmour et al. (2019)

Blue-footed Booby (Sula nebouxii)a Isla El Rancho, Mexico 2010 16 (M) 2.41 ± 0.89 Lerma et al. (2016)

Isla El Rancho, Mexico 2010 15 (F) 2.08 ± 0.68 Lerma et al. (2016)

Isla El Rancho, Mexico 2011 13 (M) 1.38 ± 0.43 Lerma et al. (2016)

Isla El Rancho, Mexico 2011 12 (F) 1.05 ± 0.24 Lerma et al. (2016)

Peruvian Booby (Sula variegata) Peru 2009 21 0.56 ± 0.09 Le Croizier et al. (2022)

Peru 2010 16 0.66 ± 0.15 Le Croizier et al. (2022)

Peru 2011 7 0.32 ± 0.05 Le Croizier et al. (2022)

Peru 2012 29 0.62 ± 0.14 Le Croizier et al. (2022)

Peru 2013 17 0.67 ± 0.11 Le Croizier et al. (2022)

Fregatidae

Great Frigatebird (Fregata minor) Clipperton Atoll 2005 9 2.42 ± 0.49 This study

Layssan Island 2009–2014 5 1.68 ± 1.01b Gilmour et al. (2019)

Palmyra Atoll 2009–2014 7 3.50 ± 1.34b Gilmour et al. (2019)

Tern Island 2009–2014 7 4.46 ± 3.74b Gilmour et al. (2019)

Magnificent Frigatebird (Fregata
magnificcens)

French Guyana 2012 20 5.81 ± 1.27 Sebastiano et al. (2017)

Barbuda 2009–2014 15 4.41 ± 0.67b Gilmour et al. (2019)

Laridae

Brown Noddy (Anous stolidus) Clipperton Atoll 2005 5 0.36 ± 0.11 This study

French Guyana 2012 20 1.13 ± 0.13 Sebastiano et al. (2017)

Cousin Island,
Seychelles

2005–2006 10 0.54 ± 0.06 Catry et al. (2008)

Lesser Noddy (Anous tenuirostris) Cousin Island,
Seychelles

2005–2006 10 0.35 ± 0.06 Catry et al. (2008)

Sooty Tern (Onychoprion fuscatus) Clipperton Atoll 2005 10 0.62 ± 0.14 This study

Aride Island,
Seychelles

2004 20 0.59 ± 0.40 Author’s unpublished
data

Dry Tortugas, Florida 1977 12 5.67 ± 2.51 Stoneburner et al. (1980)

French Guyana 2012 6 0.85 ± 0.18 Sebastiano et al. (2017)

Values are means ± SD. Sex is indicated (M: males, F: females) when available
aData reported for blue-footed boobies correspond to the early chick-rearing period (Lerma et al. 2016)
bWet weight converted to dry weight following a moisture content of 79.13% (Eagles-Smith et al. 2008)
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and heavier than males (Nelson 2005). At Clipperton Island,
they showed trophic segregation, with females feeding on
higher trophic level prey (δ15N) and in different areas (δ13C)
than males, resulting in higher blood Hg concentrations in
females. Such a sex-related trophic segregation did not
seem to exist outside of the breeding period, as the isotopic
values did not differ between sexes in feathers, nor does Hg
concentration (Table S1). For all the other species, the lack
of significant differences between the stable isotopes of
males and females in blood and feathers suggests that the
feeding ecology remains very similar between the sexes
regardless of season.

At high concentrations, Hg can pose a threat to the
health of seabirds with effects on survival, reproduction,
and demography (e.g., Chastel et al. 2022, Goutte et al.
2015, Tartu et al. 2013). For feathers, only some indivi-
duals (one Brown Booby, two Masked Boobies, and four
Great Frigatebirds, i.e., less than 8% of the seabirds ana-
lysed) had concentrations above the toxicity levels of
5 µg g−1 dw (Eisler 1987). In blood, there were 20 indi-
viduals (25% of the seabirds analysed) below the lowest-
observed effect levels of 1 µg g−1 dw, and all the remain-
ing seabirds were in the low-risk range (i.e., blood Hg
concentrations between 1 and 5 μg g−1 dw) according to
Ackerman et al. (2016). Overall, these results indicate a
low risk from Hg in both short- (blood) and long-term
(feather). In a more precise assessment of the toxicological
risk of Hg, selenium (Se) should nevertheless be con-
sidered as it has a protective effect against the toxicity of
this metal (Cuvin-Aralar and Furness 1991, Ikemoto et al.
2004). In seabird populations with low concentrations of
Hg and low concentrations of Se (e.g., skuas), a strong
impact on reproduction has been demonstrated, whereas in
populations with high concentrations of Hg and Se, Hg
had only a very limited effect (Goutte et al. 2014b,
Carravieri et al. 2020).

Supplementary information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10646-023-02691-2.
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