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ABSTRACT

Mercury contamination is a major threat to the global environment, and is still increasing in some regions despite inter-
national regulations. The methylated form of mercury is hazardous to biota, yet its sublethal effects are difficult to detect
in wildlife. Body condition can vary in response to stressors, but previous studies have shown mixed effects of mercury on
body condition in wildlife. Using birds as study organisms, we provide the first quantitative synthesis of the effect of mer-
cury on body condition in animals. In addition, we explored the influence of intrinsic, extrinsic and methodological fac-
tors potentially explaining cross-study heterogeneity in results. We considered experimental and correlative studies
carried out in adult birds and chicks, and mercury exposure inferred from blood and feathers. Most experimental
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investigations (90%) showed a significant relationship between mercury concentrations and body condition. Experimen-
tal exposure to mercury disrupted nutrient (fat) metabolism, metabolic rates, and food intake, resulting in either positive
or negative associations with body condition. Correlative studies also showed either positive or negative associations, of
which only 14% were statistically significant. Therefore, the overall effect of mercury concentrations on body condition
was null in both experimental (estimate ± SE = 0.262 ± 0.309, 20 effect sizes, five species) and correlative studies
(−0.011 ± 0.020, 315 effect sizes, 145 species). The single and interactive effects of age class and tissue type were
accounted for in meta-analytic models of the correlative data set, since chicks and adults, as well as blood and feathers,
are known to behave differently in terms of mercury accumulation and health effects. Of the 15 moderators tested, only
wintering status explained cross-study heterogeneity in the correlative data set: free-ranging wintering birds were more
likely to show a negative association between mercury and body condition. However, wintering effect sizes were limited
to passerines, further studies should thus confirm this trend in other taxa. Collectively, our results suggest that (i) effects of
mercury on body condition are weak and mostly detectable under controlled conditions, and (ii) body condition indices
are unreliable indicators of mercury sublethal effects in the wild. Food availability, feeding rates and other sources of var-
iation that are challenging to quantify likely confound the association between mercury and body condition in natura.
Future studies could explore the metabolic effects of mercury further using designs that allow for the estimation and/or
manipulation of food intake in both wild and captive birds, especially in under-represented life-history stages such as
migration and overwintering.
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I INTRODUCTION

Chemical pollution is amajor anthropogenicmodificationof the
global environment, and a fundamental characteristic of the
Anthropocene (Lewis &Maslin, 2015). Humans are responsible
for the synthesis and release of a plethora of chemical contami-
nants for agricultural uses [e.g. organochlorine andorganophos-
phate pesticides (Jones & De Voogt, 1999; S�anchez-Santed,
Colomina & Herrero Hern�andez, 2016)], and industrial or

every-day life applications [e.g. metallic trace elements, per-
fluoroalkyl substances, chlorinated paraffins (Walker et al.,
2012; Sunderland et al., 2019; Vorkamp et al., 2019)]. Among
these contaminants, and despite being a natural element, mer-
cury (Hg) is particularly hazardous to humans and wildlife
because it has no biological function and is highly toxic even at
low concentrations (Walker et al., 2012; UN Environment,
2019). In its inorganic form, Hg has an atmospheric lifetime of
0.5–1 year and can be transported over vast spatial scales
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(Obrist et al., 2018;UNEnvironment, 2019).Once deposited on
theEarth’s surface,Hg canundergo complex,microbiallymedi-
ated processes and be converted into methylmercury (MeHg),
which is assimilated and accumulated by living organisms, and
biomagnifies in food webs (Atwell, Hobson & Welch, 1998;
Evers et al., 2016; Eagles-Smith et al., 2018).

Anthropogenic Hg emissions have declined in North
America and Europe over the past two decades
(UN Environment, 2019), but are still increasing in East Asia
and in the SouthernHemisphere (Obrist et al., 2018). In addi-
tion, concentrations measured in wildlife are still increasing
in several regions of the Northern (Braune et al., 2014; Wang
et al., 2019) and Southern Hemispheres (Mills et al., 2020;
Seco et al., 2020). The Minamata Convention, an interna-
tional treaty that came into force in 2017 (http://www.
mercuryconvention.org), adopted a global strategy to reduce
Hg emissions and protect human and environmental health.
While these global restrictions may limit increases in future
Hg emissions linked to economic growth, legacy Hg emis-
sions will continue to affect the Hg cycle for decades to cen-
turies (Eagles-Smith et al., 2018). Monitoring Hg
concentrations and effects in biota and the environment is
thus a priority to oversee the effectiveness of the Minamata
Convention (Evers et al., 2016).

Adverse effects of Hg in humans and wildlife include neuro-
logical, endocrine, and immune disruption with consequences
on development, neurocognitive function, and reproduction
(Tchounwou et al., 2003; Heinz et al., 2009; Tan, Meiller &
Mahaffey, 2009; Tartu et al., 2013; Goutte et al., 2014; Eagles-
Smith et al., 2018; Evers, 2018). Several intrinsic and extrinsic
factors drive variation in Hg contamination and kinetics in wild
organisms. Feeding ecology is a key explanatory factor of
among- andwithin-species variation in tissueHg concentrations
(Anderson et al., 2009; Carravieri et al., 2014b, 2021; Polito et al.,
2016; Ma et al., 2021) but other traits such as sex and age can
also modulate this variation (Eagles-Smith et al., 2009; Robin-
son, Lajeunesse & Forbes, 2012; Jackson et al., 2015; Chételat
et al., 2020). In addition, life-history traits such as breeding or
migration strategies can influence diet, feeding rate, energy stor-
age and expenditure, thus driving variation in Hg burdens
(Seewagen, Cristol & Gerson, 2016; Ackerman, Hartman &
Herzog, 2019; Adams et al., 2020a). All these intrinsic and
extrinsic factors thus have the potential tomodulateHg toxicity.
However, identifying sublethal effects of Hg in the field can be
challenging, due to the potentially confounding influence of
concurring environmental stressors (Marcogliese & Pietrock,
2011; Marteinson, Marcogliese & Verreault, 2017; Bårdsen,
Hanssen & Bustnes, 2018). Studies have shown species-specific
sensitivity to Hg toxicity [e.g. embryotoxicity in birds (Heinz
et al., 2009); neuroreceptor inhibition in mammals (Basu et al.,
2005)], but the key phylogenetic and life-history traits or envi-
ronmental factors that could explain these differences have yet
to be identified clearly. Meta-analytical approaches quantifying
the link between Hg and health endpoints in a large number of
taxa could be effective in identifying the interactive factors that
limit our capacity to detect significant effects of Hg on wildlife
health.

Here, we performed a meta-analysis investigating the effect
of Hg contamination on body condition using information
extracted from 47 studies on 147 species of birds. Body condi-
tion indices are available in a large number of studies and spe-
cies, and they can be calculated frommorphometric measures
that are used routinely in avian investigations. Albeit widely
used, body condition indices may not be reliable indicators
of health status (Fischer, Taborsky & Dieckmann, 2009;
Schultner et al., 2013). Here, we consider body condition as
an integrative measure of fat and lean mass (Peig & Green,
2009; Labocha & Hayes, 2012) that can be affected linearly
or non-linearly by stressors (Pravosudov & Grubb, 1997;
Schultner et al., 2013), for example via changes in behaviour
(e.g. feeding performance) and/or physiology (e.g. disruption
of nutrient metabolism and energy use). We chose birds as
the study taxon because they have served widely as early sen-
tinels of negative effects of Hg on wildlife and ecosystem health
(Wolfe, Schwarzbach & Sulaiman, 1998; Whitney & Cristol,
2018). Birds are ubiquitous, being found in a large variety of
terrestrial, freshwater and marine habitats from polar regions
to the tropics. In addition, they belong to different dietary
guilds, from herbivores to omnivores, are relatively accessible
compared to other groups of vertebrates, and are thus exten-
sively studied (Konishi et al., 1989). Our aim was twofold: (i)
to test for a systematic trend in the effect of Hg on body condi-
tion in birds; and (ii) to identify moderators of this relationship
among intrinsic (e.g. species, age class, sex) and extrinsic fac-
tors (habitat type, dietary guild), as well as methodological
aspects (tissue used to measure Hg concentrations, correlative
or experimental approach). As Hg can affect bird behaviour
[e.g. reduced ability to forage and/or compete for food
(e.g. Evers et al., 2008)], metabolic rates (Gerson, Cristol &
Seewagen, 2019), and physiological pathways involved in the
stress response (Wada et al., 2009; Franceschini et al., 2017),
which can have a range of contrasting consequences for phys-
ical condition, we expected either a positive or negative rela-
tionship between Hg concentrations and body condition.
Given Hg biomagnification and naturally high bioavailability
in aquatic environments (Atwell et al., 1998; Fitzgerald, Lam-
borg & Hammerschmidt, 2007), piscivorous species can be
at greater risk of Hg exposure (Scheuhammer et al., 2007),
and are thought to have developed a better tolerance to toxic-
ity over evolutionary timescales [e.g. through more efficient
detoxification mechanisms (Robinson et al., 2011; Manceau
et al., 2021)]. Piscivorous species might therefore show a smal-
ler effect size of the Hg–body condition association.

II MATERIALS AND METHODS

(1) Search and inclusion criteria

Our literature search was conducted in ISIWeb of Science (lat-
est search 22/01/2021) across all years, using the search
terms “mercury”, “bird” and “body condition”. Since body
condition is often calculated in studies of the effect of Hg
on physiological and fitness endpoints without being the
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primary objective, we also searched the literature using the
terms “mercury”, “bird” and one of the following key words:
“effect”, “health”, “telomere”, “oxidative stress”, “hor-
mone”, “corticosterone”, “testosterone”, “thyroid”, “immu-
nity”, “parasite”, “DNA damage”, “energy”, “hatching/
fledging/breeding success”, “hatch date”, “clutch size”, “for-
aging behaviour”, “survival”, “growth” and “body mass”.
The reference lists of literature reviews found in this way
were also checked to expand the database (Fig. 1). We con-
tacted the authors of studies to obtain further details when
(i) statistical information was missing, and/or (ii) the effect
size was calculated across several species. Incomplete statisti-
cal information and a lack of a response by contacted authors
meant that some relevant studies had to be discarded (see
online Supporting Information, Table S1). The literature
search resulted in the selection of 47 studies spanning publi-
cation years 2000 to 2020 (Table 1). These covered data
mainly on passerines and seabirds with a few waders and rap-
tors (Table 1). In addition, we included nine studies from the
authors’ unpublished work in order to reduce the bias
towards passerine birds. Overall, our meta-analysis included
147 species of birds, which were mainly passerines and sea-
birds. Inclusion criteria are detailed below.

(a) Body condition indices

Previous studies attempting to determine which body condi-
tion index better represents fat and/or lean mass have pro-
duced mixed results in both mammals and birds
(e.g. Labocha, Schutz & Hayes, 2014; Kraft et al., 2019).
Here, variables initially retained as pertinent indices of body
condition were: size-corrected body mass [e.g. scaled mass
index (SMI), structural size to body mass ratio, residuals of
an ordinary least-squares regression of body mass against a
linear morphometric measure of size], body mass, organ-to-
body ratio, fat scores, pectoral muscle thickness, and organ
masses. However, only eight effect sizes from four studies

were estimated from indices other than size-corrected body
mass or body mass (Table S1), preventing an accurate esti-
mation of their potential influence on the Hg–body condition
relationship. Therefore, these effect sizes were not included
in meta-analytic models. The majority of published articles
from which effect sizes were extracted used SMI (Peig &
Green, 2009) as body condition index (see Table S2 for the
frequency of all condition indices). Therefore, to minimise
data heterogeneity, we also calculated SMI as the body con-
dition index when we had access to raw data. The SMI has
several advantages over other indices because it is not size
dependent and can be used readily to compare across popu-
lations (Labocha et al., 2014). The SMI adjusts the mass of the
individuals to the mass they would have if all individuals had
the same body size, using the following equation:

_Mi=Mi L0
bSMA=Li

where Mi and Li are the body mass and the body length
measure of individual i, respectively; the exponent bSMA is esti-
mated by the standardised major axis (SMA) regression of log
body mass on log body length; L0 is an arbitrary value of body
length, andṀi is the predicted bodymass for individual iwhen
the body length is standardised to L0. We calculated L0 as the
arithmetic mean of the body length variable chosen for each
study. As different measures of body length (e.g. tarsus, bill,
and wing length) can scale differently with body mass depend-
ing on species, we used the body size measure selected by the
authors to calculate L0 and thus SMI. When no preference
was communicated, and several body length measures were
available, we used tarsus or bill length rather than wing length,
which is difficult to measure reproducibly and can be a poor
indicator of structural body size (Jenni & Winkler, 1989).
The choice between tarsus or bill length was made by taking
the measure that correlated better with body mass on a log
basis, as this is likely to be the best one explaining the fraction
of mass associated with structural size (Peig & Green, 2009).

Fig. 1. PRISMA© diagram describing the different phases of the systemic review on the association between Hg contamination and
body condition, where N is the number of studies. *Some data sets were published in more than one scientific article, see Table 1.
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(b) Hg chemical form

The form of Hg in avian diets may vary depending on prey
types. High-trophic-level prey, such as fish and squid, mainly
containHg asMeHg, whereas invertebrates may have higher
proportions of inorganic Hg (Bloom, 1992; Mason,
Laporte & Andres, 2000; Bustamante et al., 2006; Seco
et al., 2020). All included studies measured total Hg, which
is an accurate proxy of MeHg in tissues such as blood and
feathers (e.g. Bond & Diamond, 2009; Renedo et al., 2021).

(c) Exposure pathway and measure

We included experimental studies where adults and chicks
were exposed to Hg via dietary exposure as MeHg, as well
as MeHg egg injections. We considered studies where Hg
contamination was inferred from concentrations [in parts
per million (ppm) or μg per unit wet or dry mass) measured
in whole blood, red blood cells, and feathers, in adult birds
and chicks. We excluded effect sizes obtained from other tis-
sues given their heterogeneity and small number (Table S1).
In experimental studies all Hg concentrations were reported
on a wet mass basis. By contrast, the majority of correlative
studies reported Hg concentrations on a dry mass basis. In
order to provide homogenous Hg concentration estimates,
correlative studies presenting results on a wet mass basis were
converted to dry mass. The latter calculation was based on a
moisture content of 65% in red blood cells (P. Bustamante &
O. Chastel, unpublished data), and 77% in whole blood
[mean of moisture values measured in Eagles-Smith et al.
(2008), Ackerman, Hartman &Herzog (2017) and Ackerman
et al. (2019)]. Blood is a better representative of Hg body bur-
den than are feathers in birds, and should be preferred in tox-
icity risk estimations (Fuchsman et al., 2017; Chételat et al.,
2020). In addition, Hg temporal integration into feathers
can be highly variable depending on species, feather type,
moult strategy and moult stage at sampling (Carravieri
et al., 2014a; Albert et al., 2019; Peterson et al., 2019). How-
ever, in some species, feather Hg concentrations correlate
well with concentrations in internal tissues, including blood,
and can thus also be useful representatives of Hg body bur-
dens (Ackerman et al., 2012, 2019; Fort et al., 2014). There-
fore, we decided to include studies reporting associations
between feather Hg concentrations and body condition in
our meta-analysis, and test tissue type (blood or feather) as
a moderator. Body feathers are preferentially sampled for
ethical and practical reasons, and, to avoid further heteroge-
neity in the data set, we excluded the few effect sizes obtained
from other feather types (Table S1).

(d) Other criteria

Studies comparing body condition indices between populations
at polluted sites where pollutionwas not clearlyHg-relatedwere
also excluded, as well as studies on dead, emaciated individuals
(Table S1), where body condition could be biased. Effect sizes
obtained from less than four individual birds were discarded.T
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(2) Moderators included and categorisation

Our meta-analysis included a maximum of 15 moderators: (i)
bird type (passerine, raptor, seabird, wader); (ii) age class
(chick, adult); (iii) whether the effect size had been corrected
for sex; (iv) whether the effect size had been corrected for
other factors that were specific to the study (e.g. individual
random factor, sampling date, season); (v) dietary guild (car-
nivore, herbivore, invertivore, omnivore); (vi) habitat type
(freshwater, marine, terrestrial); (vii) geographical zone
(polar/subpolar, temperate, tropical/subtropical); whether
the sampled population was (viii) wintering (yes/no), (ix)
migrating (yes/no) or (x) breeding (yes/no); (xi) tissue type
used for Hg quantification (blood, feather); (xii) body condi-
tion index (body mass, size-corrected body mass); (xiii)
species-specific basal metabolic rate (BMR); (xiv) Hg concen-
tration; (xv) ratio of species-specific maximum body mass to
average body mass (hereafter BM ratio, which reflects the
maximum body condition of the species; Vincze et al.,
2019). All moderators, their modalities, the number of effect
sizes, and the justification for including them to study the link
between Hg concentration and body condition are reported
in Table 2. Dietary guild was assigned based on results in
the sampled population of each study when available, or
from the Wilman et al. (2014) database. Species-specific
BMR values were extracted from Ellis & Gabrielsen (2001),
Møller (2009), Londoño et al. (2015) and McKechnie,
Noakes & Smit (2015), but were not available for all species.
Body mass information to calculate the BM ratio was
extracted from the Dunning (2007) database, or from addi-
tional references (Glahn & McCoy, 1995; Shirihai et al.,
2002; Kooyman et al., 2004; Helseth, Stervander & Walden-
ström, 2005; Tob�on & Osorno, 2006; Kojadinovic et al.,
2007a; Overton et al., 2009; Hancock, Kushlan & Kahl,
1992; Rising, 2010; García, Moreno-Opo & Tint�o, 2013;
Maccarone & Brzorad, 2016; studies included in the meta-
analysis). For each study, we extracted the moderators, as
well as sample and effect sizes as detailed below.

(3) Effect size extraction or calculation

Given that most studies were correlative, we chose Pearson’s
r as the effect size. Based on the information given in correl-
ative studies, we calculated effect sizes using t-values,
F-values, P-values, means and standard deviations, or corre-
lation coefficients, following formulae given in Koricheva,
Gurevitch & Mengersen (2013). For studies reporting the
comparison of experimental groups, we calculated standar-
dised mean differences (Cohen’s d), which were then trans-
formed to Pearson’s r, following Koricheva et al. (2013). To
adhere to normality assumptions, Pearson’s r were then con-
verted to Fisher’s Zr following the equation in Lipsey & Wil-
son (2001). Sampling variances associated Z-scores were
calculated as (n–3)−1 following Koricheva et al. (2013). Posi-
tive effect sizes indicate a positive effect of Hg on body condi-
tion, while negative effect sizes denote a decrease in body
condition with increasing Hg concentrations.

(4) Meta-analytic technique

In a preliminary step, we conducted a meta-analysis on the
full data set including 335 effect sizes and a study type

Table 2. List of moderators included in the meta-analysis

Moderator
Modalities (number of
effect sizes)a

Expected influence on
the Hg–body condition
association

Bird typeb Passerine (145; 15),
Raptor (6; 2), Seabird
(150; 1), Wader (14; 2)

Physiological or life-
history related
differences in
sensitivity to Hg

Age class Adult (256; 11), Chick
(59; 9)

Age-related sensitivity
to Hg

Accounted for
sex

Yes (18; 5), No (297; 15) Sex-related sensitivity to
Hg

Accounted for
other
variables

Yes (6; 11), No (309; 9) Accounting for other
confounding factors
may modulate effect
sizes

Dietary guild Carnivore (114; 5),
Herbivore (25; 10),
Invertivore (143; 5),
Omnivore (33; 0)

Potential exposure to
different Hg chemical
forms

Habitat typeb Freshwater (9; 1),
Marine (153; 0),
Terrestrial (153; 19)

Potential exposure to
different Hg chemical
forms

Zoneb Polar/subpolar (105; 0),
Temperate (156; 18),
Tropical/subtropical
(54; 2)

Different energetic
demands may change
susceptibility to Hg

Winteringb Yes (16; 0), No (299; 20) Physiological status,
energetic demands
and behaviour of
different life-history
stages may change
susceptibility to Hg

Migrating Yes (41; 5), No (274; 15)
Breedingb Yes (197; 0), No (118;

20)

Tissueb Blood (213; 20), Feather
(102; 0)

Tissue-specific temporal
integration of Hg

Body condition
indexb

Body mass (19; 17),
Size-corrected body
mass (296; 3)

Index-associated
influence on the
Hg–body condition
relationship

Covariate Unit (number of
effect sizes)

Hg
concentration

μg/g (315; 20) (dw and
ww for correlative
and experimental
studies, respectively)

Concentration-
dependent
susceptibility to Hg

BMR kJ/day (132; 17) Energetic needs may
influence the
susceptibility to Hg

BM ratio No unit (315; 20) Potential effect of fat
load on body
condition

BM, body mass; BMR, basal metabolic rate; dw, dry mass; ww,
wet mass.
aThe first and second number are for correlative and experimental
studies, respectively.
bModerators not included in meta-analytic models of experimental
studies given the limited sample size.
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moderator (correlative or experimental) (results not shown).
However, experimental studies appeared to be highly influ-
ential in the effect estimates, because of extreme values and
high leverage. Therefore, we carried out separate meta-
analyses for correlative and experimental data sets.

(a) Potential bias in effect size reporting

To test for the presence of potential bias in the results of our
meta-analysis, we first explored funnel plots produced
between effect sizes and their corresponding measure of pre-
cision (here standard error, SE) for signs of asymmetry. Sec-
ond, we performed Egger’s regression tests (Egger et al.,
1997) using overall intercept-only models with the regtest func-
tion (metafor package, v. 2.4-0; Viechtbauer, 2010). Egger’s
test evaluates the relationship between effect sizes and mea-
surements of study precision (Egger et al., 1997), and can
reveal different types of bias, such as reporting bias or poor
methodological quality (Sterne et al., 2011). For instance,
studies reporting a significant effect may be more likely to
be published than studies reporting no effect (Koricheva
et al., 2013; but see Koricheva, 2003). Here, most effect sizes
for correlative studies, and all effect sizes for experimental
studies, were extracted from published resources (Fig. 1).
Our meta-analysis also included unpublished resources for
the correlative data set. We thus tested (i) potential bias in
published and unpublished studies separately, as well as com-
bined; (ii) whether the publication status (used as amoderator)
of the effect size had an effect on the meta-analytical results.

(b) Random structure and overall effect of Hg on body condition

All meta-analytic models were performed using the rma.mv

function in the metafor package (v. 2.4-0; Viechtbauer, 2010)
in R (v. 4.0.5; R Core Team, 2021). We constructed multile-
vel meta-analytic linear mixed effect models, which facilitates
the control of multiple sources of non-independence. Our
data were affected by multiple types of non-independence
(Noble et al., 2017), including non-independence of effect
sizes, multiple effect sizes originating from the same studies,
non-independence of observations of the same species, as
well as non-independence of species (shared ancestry). We
aimed to control for these dependencies by testing the effect
of three random variables: individual effect size identity (indi-
vidual effect size ID, unique per data row, necessary to esti-
mate residual heterogeneity; Noble et al., 2017), study
identity (study ID), and species identity (species ID). In the
correlative data set, we also tested the influence of the phylo-
genetic variance–covariance matrix representing the phylo-
genetic history of the species. For the latter, we used a
rooted ultrametric consensus tree that was inferred from
the SumTrees Python library (Sukumaran & Holder, 2010),
based on 1000 random trees obtained from birdtree.org
(Jetz et al., 2012), using the Hackett backbone tree (Hackett
et al., 2008). Phylogeny was not accounted for in the experi-
mental data set, as including phylogenetic random effects
with less than 15 species can lead to unreliable estimates

(Bolker et al., 2009). To select the appropriate random struc-
ture, we constructed intercept-only meta-regression with all
combinations of the three random variables, as well as
the phylogenetic signal for correlative studies, using the
maximum-likelihood (ML) method. We then compared the
models using the Akaike Information Criterion (AIC) and
chose the random structure of the model with the lowest
AIC value, and lowest number of variables when AIC values
were similar between models (parsimony criteria) (Table S3).
Using the random structure of the best selected model, we
tested the overall effect size of Hg contamination on body
condition using restricted maximum likelihood approxima-
tion (REML). We also calculated the heterogeneity statistic
(I2total) based on an intercept-only meta-analytic model (built
using the rma function in metafor), without any random
effects. I2 represents the percentage heterogeneity in the
effect sizes (0–100%) due to true heterogeneity rather than
random sampling variance (Higgins & Thompson, 2002;
Higgins et al., 2003). I2 was moderate to high (defined as
I2 > 50%; Higgins et al., 2003; see Section III), therefore we
ran moderator analyses to explore which life-history, ecolog-
ical or physiological parameters could explain the high het-
erogeneity observed in the effect of Hg contamination on
body condition in birds.

(c) Moderator analysis

In order to study the influence of different moderators on the
association between Hg contamination and body condition,
we constructed multifactorial meta-analytic models using
the MuMIn package (Bart�on, 2020). Chicks and adults, as
well as blood and feathers, are known to behave differently
in terms of Hg accumulation and health effects
(e.g. Whitney &Cristol, 2018), and could show different asso-
ciations between Hg and body condition. Therefore, their
single and interactive effects were always accounted for in
models of the correlative data set, as follows: Z score ~ age
class + tissue type + age class*tissue type + Moderator

(Table S4). Models were constructed with the selected ran-
dom structure (see Sections II.4b and III), fitted using ML,
and compared to the base model: Z score ~ age class + tissue
type + age class*tissue type. In preliminary steps the age class
‘juveniles’was considered, but data were too scarce to enable
inclusion in the final meta-analysis. The available data on
body condition and Hg concentrations in blood or feathers
of juveniles were pooled with those of adults. We considered
that a moderator had a significant effect on the association
between Hg and body condition when its addition to the base
model decreased the AIC corrected for small sample size
(AICc) by at least 2. Data on BMR were available only for
a subset of observations. To test the effect of BMR on the
association between Hg and body condition we thus con-
structed a separate set of models (Table S4). Using these
models, we obtained parameter estimates for each predictor
after refitting models with REML.

The experimental data set was too small for multifactorial
statistical analysis (N = 20 effect sizes). Therefore, each
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moderator was entered as a single predictor to an intercept-
only multilevel meta-analytic model (fitted by REML) with
the selected random structure (Table S5). Using these
models, we obtained parameter estimates for each predictor
and factor level. The overall significance of each predictor
was assessed using an omnibus test (Viechtbauer, 2010).

III RESULTS

(1) Bias in effect size reporting

For the correlative data set, Egger’s tests indicated a tendency
for biased reporting towards negative effect sizes among pub-
lished studies (Egger’s test: N = 224, z = −1.932, P = 0.053),
and a significant bias towards positive effect sizes among
unpublished studies (Egger’s test N = 91, z = 2.148,
P = 0.032; see Table S6 for funnel plots). By contrast, we
found no statistical evidence of bias in the correlative database
combining published and unpublished effect sizes (Egger’s
test: N= 315, z= −0.707, P= 0.480). In addition, publication
status had no effect on the Hg–body condition association
(Table S6). Therefore, all further meta-analytic models were
only run on the full correlative data set combining published
and unpublished effect sizes.

We detected a tendency for biased reporting towards neg-
ative effect sizes in experimental studies (Fig. 2; Egger’s test:
N = 20, z = −1.894, P = 0.058), but this bias was non-
significant.

(2) Correlative studies

We used 315 population-specific effect sizes from 145 species
to test the relationship between Hg concentration and body
condition in correlative studies. These were carried out in wild
populations, including mainly adult passerines and seabirds,
from terrestrial and marine environments, in temperate and
polar/subpolar regions (Table 2). The median number of
individuals inspected per effect size was 16 (range: 4–1051).
Comparison of intercept-only multilevel meta-analytic models

indicated a significant increase in fit with the inclusion of indi-
vidual effect size ID and species ID (Table S3), which were
retained in the random structure of all subsequent models.
Phylogenetic signal appeared to have little influence on the
overall effect size and did not affect model fit. The overall
effect of Hg contamination on body condition was non-
significant (estimate ± SE = −0.011 ± 0.020, confidence
interval, CI [−0.049; 0.027], while accounting for individual
effect size ID and species ID). Effect size heterogeneity was
moderate (I2 = 55%; Cochran’s Q test = 668, df = 314,
P < 0.0001), indicating suitability for moderator analyses.
Multifactorial moderator analyses revealed that wintering sta-
tus had an influence on effect size estimates (AICc 2.6 points
lower than the base model, Table S4): wintering birds were
more likely to show a negative effect of Hg on body condition
(Fig. 3). Other moderators had no clear effects on the
Hg–body condition association (Table S4).

(3) Experimental studies

Experimental studies encompassed 20 effect sizes from five
species (Ardea alba, Falco sparverius, Gavia immer, Setophaga coro-
nata, Taeniopygia guttata). The median number of individuals
inspected per effect size was 24 (range: 5–49). Only individ-
ual effect size ID was retained in the random structure of
intercept-only multilevel meta-analytic models (Table S3).
Hg contamination was not related to body condition
(0.262 ± 0.309, [−0.344; 0.867], while accounting for indi-
vidual effect size ID), and effect size heterogeneity was very
high (I2 = 99%; Cochran’s Q test = 887, df = 19,
P < 0.0001). In the experimental data set, no moderator pre-
dicted the Hg–body condition relationship (Table S5, Fig. 4,
P > 0.100 in all Omnibus tests).

IV DISCUSSION

Our extensive meta-analysis showed no overall effect of
Hg contamination on body condition across 147 free-

Fig. 2. Funnel plot for correlative (left) and experimental (right) studies.
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living or captive bird species. However, free-ranging win-
tering passerines were more likely to present a negative
association between Hg concentration and body condi-
tion, but further studies are necessary to confirm this trend
in other taxa. We found that waders and raptors, birds in
freshwater habitats and tropical/subtropical regions, and
especially migrating and overwintering birds, are under-
represented in the literature on Hg contamination and
body condition. Experimental studies were more likely to
detect a significant effect of Hg concentrations on body
condition, with 90% of estimated effect sizes being signifi-
cantly positive or negative. Conversely, only 14% of cor-
relative effect sizes for the effect of Hg contamination on
body condition were significantly positive or negative.
Although recent experimental studies exposed birds to

environmentally realistic Hg doses, these were often in
the upper range of levels encountered in the wild
(Kobiela, Cristol & Swaddle, 2015; Yu et al., 2016; Ma
et al., 2018). Therefore, the difference in sensitivity to
effects between correlative and experimental studies could
stem from a threshold dose that can be reached under con-
trolled conditions, but is unlikely in the wild.

(1) Overview of experimental and correlative
studies

Accumulation of energy stores can be part of the response to
stressors, whereby perceived risk or unpredictable access to
food can cause birds to store energy as a buffer against unpre-
dictable environmental changes [Schultner et al. (2013) and

Fig. 3. Forest plot of the effect size for observed relationships between Hg concentrations and body condition in birds in correlative
studies, depending on ecological, physiological and methodological factors (Fisher’s Z scores [± 95% confidence interval]), while
accounting for tissue type, age class and their interaction. The dashed line represents a null effect size (Fisher’s Z = 0). Negative
effect sizes indicate lower body condition with increased Hg concentrations. The size of the squares for the mean effect size is
proportional to the number of observations the effect size estimate is based on. Individual effect size and study are random factors.
Model estimates are considered statistically significant if their 95% confidence interval does not cross zero. BM ratio, body mass
ratio; BMR, basal metabolic rate; Body cond. index, body condition index; dw, dry mass; [Hg], Hg concentration; Other var. acc.,
other variables taken into account; ppm, parts per million; Sex acc., sex taken into account; Size-corr. body mass, size-corrected
body mass.
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references therein]. Experimental exposure to environmen-
tally realistic Hg levels caused an increase in energy (fat)
stores and body mass in zebra finch Taeniopygia guttata

(Gerson et al., 2019). Feeding rate or ingested food were not
quantified, but birds were offered food ad libitum. Hence,
their increase in energy stores was likely linked to an increase
in food intake, as shown in mallard ducks Anas platyrhynchos
exposed to Hg and fed ad libitum (Heinz, 1979). Alternatively,
Hg could increase energy storage by disrupting the metabo-
lism of carbohydrates or lipids [Seewagen (2020) and refer-
ences therein]. However, in another experimental study,
Hg-treated Taeniopygia guttata individuals waited longer to
commence foraging and showed a significant decrease in
their body mass, after exposure to predation risk (Kobiela
et al., 2015). Other experimental studies showed no effect of
Hg on body condition despite reduced appetite, motivation
to forage, and possibly low foraging efficiency (Bouton et al.,
1999; Spalding et al., 2000; Adams & Frederick, 2008). Over-
all, experimental studies point to disruption of feeding behav-
iour, and/or nutrient and energy metabolism, with positive,
negative or no consequences on body condition. This sug-
gests that metabolic effects of Hg may be weak, and thus
become (statistically) detectable only at high exposure levels,
and/or under specific conditions that could not be identified

by the meta-analysis. Experimental data sets were only eight
in number and suffered from a slight publication bias. There-
fore, we cannot exclude that further experimental work in a
larger sample of individuals and species could reveal a differ-
ent picture.
Previous investigations and literature reviews highlighted

substantial heterogeneity in the strength and direction of
the effect of Hg concentrations on body condition in wild
birds: studies reported significantly negative (e.g. Ackerman
et al., 2012, 2019; Fort et al., 2015; Adams et al., 2020a), pos-
itive (e.g. Kalisi�nska et al., 2010), or no associations
(e.g. Heath & Frederick, 2005; Herring et al., 2014; Tartu
et al., 2015). This heterogeneity could stem from the small
statistical power of several ecotoxicological field investiga-
tions. Meta-analytical approaches can overcome this draw-
back and provide higher precision in the estimation of
effect sizes (Koricheva et al., 2013). However, our meta-
analysis confirmed the lack of a clear pattern. The correlative
data set included a large number of effect sizes, with a bal-
anced distribution of modalities for most moderators, and a
lack of bias, thus suggesting that the output of this meta-
analysis including both published and unpublished data is
robust. Interestingly, we detected a (publication) bias towards
studies that show a negative effect of Hg on body condition,

Fig. 4. Forest plot of the effect size for observed relationships between Hg contamination and body condition in birds in experimental
studies, depending on ecological, physiological andmethodological factors (Fisher’s Z scores [± 95% confidence interval]). The dashed
line represents a null effect size (Fisher’s Z = 0). Negative effect sizes indicate lower body condition with increased Hg exposure. The
size of the squares for the mean effect size is proportional to the number of observations the effect size estimate is based on. Individual
effect size and study are random factors. Model estimates are considered statistically significant if their 95% confidence interval does
not cross zero. BM ratio, body mass ratio; BMR, basal metabolic rate; [Hg], Hg concentration; Other var. acc., other variables taken
into account; ppm, parts per million; Sex acc., sex taken into account; ww, wet mass.
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while positive effects were more likely to remain unpublished
(Table S6).

Among the 15 tested moderators in correlative studies,
only wintering status was identified as a driving factor of
cross-study heterogeneity in results. Wintering birds were
more likely to show a negative effect of Hg concentrations
on body condition, suggesting a more detectable, negative
effect when food is scarce and/or energetic demand for cop-
ing with unfavourable weather conditions is high. This effect
was driven by two studies on several passerine species
(Ackerman et al., 2012, 2019) and needs confirmation from
other species. As discussed above for metabolic and beha-
vioural effects in experimental settings, food intake and pre-
dation risk could be critical in driving effects of Hg
concentration on body condition. Feeding rates, food avail-
ability and predation risk are challenging to measure in the
wild, and could thus be key factors potentially confounding
the Hg–body condition association in natura. In conclusion,
there is a need for further studies that measure Hg–body con-
dition associations while accounting for food intake and con-
current stressors (e.g. predation risk), especially at
challenging life-cycle stages such as chick-rearing, migration,
overwintering and moult.

(2) Potential confounding factors and directions for
future studies

Results from our meta-analysis indicate that body condition
indices are not sensitive endpoints of Hg sublethal effects in
birds. In accordance with conclusions from Fuchsman et al.
(2017) and Evers (2018), reproductive endpoints should be
preferred to estimate Hg toxicity risk. Effects of Hg on repro-
ductive success also have the advantage of being comparable
between laboratory-based and field studies in similar taxa
(Evers, 2018). The results of our meta-analysis also refute
our prediction of smaller effect sizes of the Hg–body condi-
tion association in piscivorous species, because of their natu-
rally high Hg exposure over evolutionary timescales
(Scheuhammer et al., 2007; Evers, 2018). The lack of sensitiv-
ity of body condition indices to Hg effects could stem from
several non-exclusive factors, some of which are inherently
linked to the concept of ‘body condition’. Body condition
indices have been used as indicators of fat reserves, although
not always explicitly so (reviewed in Labocha & Hayes,
2012). However, body mass variation can be driven largely
by lean mass, not only fat mass, especially in migrating birds
(Piersma, Gudmundsson & Lilliendahl, 1999; Seewagen &
Guglielmo, 2011). As such, body condition indices may be
poor indicators of energy stores in species with intrinsically
low percentage of body lipids (Jacobs et al., 2012), and be
no more informative than body mass alone (Labocha &
Hayes, 2012). Here, we found no effect of body condition
index type on the Hg–body condition association
(Tables S2 and S4). Previous studies have shown that it is
complicated to draw generalisations on which body condi-
tion index best represents body condition, but that different
indices are often correlated (Labocha et al., 2014; Kraft

et al., 2019). We can speculate that if Hg had a clear impact
on body condition in birds, effects would be detected irre-
spective of the index used, but further studies are needed to
address this point specifically. In addition, body condition
indices can vary substantially with season, sex and other fac-
tors, complicating comparisons among studies (Labocha &
Hayes, 2012; Labocha et al., 2014). For instance, effects of
Hg on body condition have been shown to depend on time
of day in migrating passerines (Adams et al., 2020b), as body
mass can fluctuate strongly across the day in small birds. To
investigate further the potential role of energy storage and
use on the relationship between Hg concentration and body
condition, we tested the effect of BM ratio and BMR as mod-
erators. The BM ratio is an indicator of maximum body con-
dition and energy reserves (Vincze et al., 2019), while BMR
represents the energy needed for basal body maintenance
[in a resting, post-absorptive phase, under thermoneutral
conditions (McNab, 1997; Ellis & Gabrielsen, 2001; White
et al., 2007)]. Both species-specific BM ratio and BMR were
poor predictors of the variation in the Hg–body condition
association. However, only a third of the species included in
the analysis had known BMR information, and BMR also
can vary depending on other factors, such as temperature
and latitude (Ellis & Gabrielsen, 2001; White et al., 2007),
or the presence of other environmental contaminants such
as persistent organic pollutants (Blévin et al., 2017). The influ-
ence of energy storage strategies and BMR on the association
between Hg contamination and body condition needs fur-
ther investigation, and likely works at the individual level,
which cannot be accounted for by meta-analytical
approaches.

Physiological factors could also confound the relationship
between Hg concentration and body condition in birds. An
example of this is the potential mismatch between the tempo-
ral integration of Hg into feathers and the timing of body
condition measures (see also Section II.1). In addition, the
Hg–body condition relationship could reflect mechanisms
for dilution (or concentration) of Hg in tissues following body
mass gain (or loss). However, this has been shown only in two
studies on healthy individuals [Hg dilution in blood in grow-
ing juvenile birds (Ackerman, Eagles-Smith &Herzog, 2011);
Hg concentration in blood in fasting passerines during simu-
lated migratory fasting (Seewagen et al., 2016)], and in sea-
birds that died from starvation (Fort et al., 2015). Further
evidence from multiple avian species is necessary to confirm
whether adaptive changes in body mass and body mass com-
position, which are necessary to sustain energy-demanding
activities such as moulting, migrating and breeding (Bech,
Langseth & Gabrielsen, 1999), could drive variation in circu-
lating Hg concentrations. To this end, we encourage the use
of other non-invasive indices of body condition, such as pec-
toral muscle thickness (a proxy of lean mass; e.g. Sears, 1988),
or body composition assessed via quantitative magnetic reso-
nance (Seewagen et al., 2016; Ma et al., 2018), and to account
for sampling time of day (Adams et al., 2020b).

Another possible factor confounding the Hg–body condi-
tion association could be selenium (Se) status. Se can play a
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protective role against Hg toxicity at the biochemical level
(Cuvin-Aralar & Furness, 1991; Ralston, Blackwell &
Raymond, 2007; Scheuhammer et al., 2015). The formation
of apparently nontoxic Hg–Se granules observed in wildlife
after MeHg demethylation is considered to be the primary
detoxification mechanism of MeHg, and enables long-term
storage of Hg (Manceau et al., 2021). However, the mutual
sequestration of Hg and Se can be detrimental. Specifically,
Hg can inhibit Se-dependent enzymes (selenoenzymes),
which are critical for brain health function, especially in early
life (Ralston et al., 2008; Ralston, Ralston &Raymond, 2016).
Sublethal effects of Hg and the Hg–body condition associa-
tion could thus be influenced by the presence and bioavail-
ability of Se in the diet, but this is still understudied with
respect to the toxic effects of Hg in avian species. Quantifying
the Se:Hg molar ratio (Scheuhammer et al., 2015), and/or a
risk assessment criterion that accounts for concurrent intake
of MeHg and Se (Se health benefit value; Ralston et al.,
2016), could improve our understanding of the sublethal
effects of Hg in birds.

V CONCLUSIONS

(1) Our meta-analysis indicates that body condition is an
unreliable endpoint of the sublethal effects of Hg in
wild birds.

(2) Associations of Hg with body condition appear to be
clearer under controlled conditions and further inves-
tigations are needed.

(3) Wintering birds were more likely to show a negative
association between Hg and body condition in the
wild, but further studies should confirm this in addi-
tional taxa.

(4) We highlight a substantial knowledge gap on the met-
abolic effects of Hg in waders and raptors, birds in
freshwater habitats and from tropical/subtropical
regions, and especially in migrating and overwintering
birds.

(5) Our results indicate the need for further studies in both
the laboratory and the field on the effects of Hg on
feeding rates, foraging efficiency, and energy storage
and use in a larger sample of individuals and species.
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