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a b s t r a c t

Albatrosses (Diomedeidae) are iconic pelagic seabirds whose life-history traits (longevity, high trophic
position) put them at risk of high levels of exposure to methylmercury (MeHg), a powerful neurotoxin
that threatens humans and wildlife. Here, we report total Hg (THg) concentrations in body feathers from
516 individual albatrosses from 35 populations, including all 20 taxa breeding in the Southern Ocean. Our
key finding is that albatrosses constitute the family of birds with the highest levels of contamination by
Hg, with mean feather THg concentrations in different populations ranging from moderate (3.8 mg/g) to
exceptionally high (34.6 mg/g). Phylogeny had a significant effect on feather THg concentrations, with the
mean decreasing in the order Diomedea> Phoebetria > Thalassarche. Unexpectedly, moulting habitats
(reflected in feather d13C values) was the main driver of feather THg concentrations, indicating increasing
MeHg exposure with decreasing latitude, from Antarctic to subtropical waters. The role of moulting
habitat suggests that the majority of MeHg eliminated into feathers by albatrosses is from recent food
intake (income strategy). They thus differ from species that depurate MeHg into feathers that has been
accumulated in internal tissues between two successive moults (capital strategy). Since albatrosses are
amongst the most threatened families of birds, it is noteworthy that two albatrosses listed as Critical by
the World Conservation Union (IUCN) that moult and breed in temperate waters are the most Hg-
contaminated species (the Amsterdam and Tristan albatrosses). These data emphasize the urgent need
for robust assessment of the impact of Hg contamination on the biology of albatrosses and they docu-
ment the high MeHg level exposure of wildlife living in the most remote marine areas on Earth.

Crown Copyright © 2018 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Mercury (Hg) is a persistent and non-essential trace element
that ranks third on the priority list of hazardous substances, based
on toxicity and prevalence at contaminated sites (ATSDR; https://
www.atsdr.cdc.gov/spl/). Hg is mobilized from geological deposits
through both natural and anthropogenic processes and travels long
e by Prof. W.-X. Wang.
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distances within the atmosphere to reach even the most remote
regions on Earth located far from emission sources. After atmo-
spheric deposition, microorganisms methylate inorganic Hg (iHg)
into methylmercury (MeHg), a powerful neurotoxin that bio-
accumulates in organisms and biomagnifies in food webs to levels
that pose major health risks to humans and wildlife (Driscoll et al.,
2013). Among consumers, birds exhibit varying levels of trophic,
spatial and temporal integration of contaminants and so are
effective sentinels of MeHg bioavailability (Furness, 1993; Evers
et al., 2005). Since MeHg contamination increases from terrestrial
to aquatic ecosystems, consumption of freshwater and marine
foods constitutes the major sources of MeHg exposure in humans
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and animals (Evers et al., 2005; Driscoll et al., 2013). Hence, sea-
birds have been frequently used as indicators of MeHg contami-
nation in the marine environment (Monteiro and Furness, 1995;
Burger and Gochfeld, 2004).

Albatrosses are iconic pelagic seabirds with life-history traits
that make them potentially at high risk of MeHg exposure. They are
extremely long-lived animals with some individuals living >50
years (Wasser and Sherman, 2010), and they are at the top of the
food web, typically preying on, or scavenging large carnivorous
nekton (Cherel and Klages, 1998; Cherel et al., 2017). The liver is the
principal tissue for long-term Hg storage (Thompson, 1990), and
pioneering studies have shown that some albatross livers con-
tained amongst the highest total Hg (THg) levels documented for
apparently healthy free-living vertebrates, albeit lower than those
recorded in some marine mammals (Muirhead and Furness, 1988;
Honda et al., 1989; Stewart et al., 1999). Subsequent measurements
generally confirmed substantial Hg contamination of albatrosses,
but with large variation depending on tissue type, individual,
population and species (Thompson et al., 1993; Kim et al., 1996;
Hindell et al., 1999; Stewart et al., 1999). Comparison between
contemporary and historical specimens showed slight or no in-
crease in albatross THg levels over time, thus suggesting that
contamination results primarily from natural - not anthropogenic -
processes (Thompson et al., 1993, but see Vo et al., 2011). The
inference is that albatrosses are amongst the organisms most
contaminated by Hg (Thompson et al., 1993), but the available data
set remained largely incomplete and suffered from several limita-
tions: (i) many taxa and populations have not been sampled, (ii)
sample sizes were often low (n< 5), and (iii) relating published data
to a species under the current taxonomy can be difficult because of
splitting of species in the last decade (Phillips et al., 2016). This,
together with the remoteness of most colonies, has resulted in a
critical lack of comprehensive knowledge on Hg contamination in
albatrosses.

Here, we report THg concentrations in 516 individual alba-
trosses from 35 populations, including all 20 species and subspecies
that breed in the Southern Ocean, thus providing new information
on THg levels in 11 taxa and 22 populations (Table 1). THg con-
centration was measured in body feathers for practical, ethical and
scientific reasons: (i) body feathers can be collected easily and non-
invasively from live birds and they allow comparisons of metal
exposure over time using museum specimens (Thompson et al.,
1993; Vo et al., 2011; Carravieri et al., 2016), (ii) body feathers
present less THg variation than do wing and tail feathers, and their
collection does not impair flying ability (Furness et al., 1986;
Thompson et al., 1993), (iii) most THg in feathers is organic, thus
providing a mean of measuringMeHg exposure of birds (Thompson
and Furness,1989b; Renedo et al., 2017), and (iv) plumage is amajor
pathway for MeHg elimination in avian species (Burger, 1993;
Monteiro and Furness, 1995). We tested for the importance of
several potential factors that might drive Hg exposure, including
breeding frequency, geographical location of the breeding colonies
and isotopic proxies of the foraging habitats and trophic levels
during moult (feather d13C and d15N, respectively). In addition, we
examined a potential latitudinal effect on Hg exposure in the
Southern Ocean, because recent investigations indicate that birds
foraging in colder, southerly waters present lower tissue Hg con-
centrations than those feeding further north in temperate waters
(Carravieri et al., 2014a, 2016, 2017).

2. Materials and methods

2.1. Study sites, birds and sampling

Body feathers were collected at each breeding site from 7 to 33
randomly chosen adult albatrosses over the period 2004e2013.
Fieldwork was carried out on 14 islands and archipelagos that are
scattered within the Southern Ocean (south of the Subtropical
Front, STF) or in warmer fringing waters (Table S1). Two, five and
seven islands were located in the Atlantic, Indian and Pacific
oceans, respectively. The Subtropical (STZ), Subantarctic (SAZ) and
Antarctic (AZ) Zones are here defined as the zones north of the STF,
between the STF and the Polar Front (PF), and south of the PF,
respectively (Fig. 1). The 14 sampling sites are located within the
STZ (Amsterdam, Tasmanian and Chatham islands), the SAZ
(Gough, Prince Edward, Crozet, Kerguelen, Auckland, Snares,
Campbell, Antipodes and Bounty islands), and the AZ (South
Georgia and Heard Island) (Table S1). Based on feather d13C iso-
scapes (Jaeger et al., 2010), values of>�18.3‰, �21.2 to �18.3‰,
and < �21.2‰ were considered to correspond to STZ, SAZ and AZ,
respectively.

2.2. Moult in albatrosses and feather sampling

To test for the potential effects of foraging habitat and trophic
position on feather THg concentrations, THg and isotopic values
were measured on the same body feather taken from each indi-
vidual albatross. In the Southern Ocean, d13C values of seabirds can
be used to infer their foraging habitats (Cherel and Hobson, 2007;
Phillips et al., 2009; Quillfeldt et al., 2010) and d15N values increase
with trophic level (Cherel et al., 2010). Because keratin is a meta-
bolically inactive molecule that is inert following synthesis, isotope
values reflect the diet at the time of feather growth (Hobson and
Clark, 1992; Bearhop et al., 2002). Hence, stable isotope analysis
of feathers documents the feeding ecology of albatrosses during
moult (Cherel et al., 2000; Phillips et al., 2009). Three potential
limitations of the method are notable. (i) The exact timing of
growth of body feathers in albatrosses is unknown as they are
replaced gradually over the long inter-breeding period, with only
~7% of body feathers being moulted and regrown at any one time
(Battam et al., 2010). The temporal window represented in the
composition of body feathers depends on albatross breeding fre-
quency and duration of the breeding cycle. Consequently, the inter-
breeding (moulting) period spans a full year plus a winter (~16
months) in small biennial breeders (the grey-headed, sooty and
light-mantled albatrosses), a full year (~12 months) in large bien-
nial breeders of the genus Diomedea (seven taxa), and one winter
(~4 months) in annual breeders (10 taxa) (Table S1). (ii) Moult of
body feathers in albatrosses rarely occurs during the breeding
period (Catry et al., 2013). In the present study, most feather d13C
and d15N values were different from the values that characterize
feeding near the breeding sites (Cherel et al., 2013), thus verifying
that feather moult took place during the inter-breeding period. (iii)
More importantly, there is a temporal mismatch between isotopic
values and THg concentrations in feathers of adult birds. The latter
is considered to represent Hg accumulated between two consecu-
tive moulting cycles, i.e. a much longer integration period than that
corresponding to feather growth (Bond, 2010). However, a pre-
liminary analysis of our data indicated a more complex picture;
feather THg concentrations were correlated with d13C in feathers,
which represents the carbon source in moulting habitat (see Re-
sults). The very low THg concentrations in feathers that were
grown in Antarctic waters (but not further north) prompted further
investigations using three albatross populations that partly moult
in Antarctic waters; grey-headed, sooty and light-mantled alba-
trosses from the Prince Edward, Gough, and Kerguelen Islands,
respectively (Jaeger et al., 2013; Cherel et al., 2013). In those birds,
THg concentrations and d13C and d15N values were measured on
three additional body feathers from each individual (for a total of
four feathers per bird) to better investigate potential relationships



Table 1
Review of total mercury (THg) concentrations in body feathers of adult albatrosses. All the existing literature was reviewed up to date (December 2017). A few data were
deleted due to various problems, including (i) too small sample sizes (n < 5; Ochoa-acu~na et al., 2002; Shinsuke et al., 2003), (ii) taxonomic uncertainties (e.g. the wandering
albatross species complex; Thompson and Furness, 1989b; Thompson et al., 1993), and (iii) geographical uncertainties together with or without other feather types than body
feathers (e.g. North Pacific and flight feathers; Honda et al., 1989; Kim et al., 1996; Vo et al., 2011). Values are means± SD with ranges in parentheses.

Taxa Location Individuals (n) THg (mg/g) References

Diomedea spp.
Wandering albatross South Georgia 66 19.59± 10.12 (5.44e73.42) Thompson et al., 1993

14 27.43± 8.14 (15.40e45.36) Anderson et al., 2009
34 20.14± 7.64 (8.09e39.82) Tavares et al., 2013
10 20.31± 5.88 (14.69e29.97) This study

Prince Edward 29 24.83± 12.35 (11.84e58.58) Thompson et al., 1993
12 24.80± 8.61 (11.87e41.95) This study

Crozet 165 22.14± 10.30 (5.86e94.72) Bustamante et al., 2016
12 23.75± 6.84 (13.79e38.30) This study

Kerguelen 12 16.59± 3.78 (9.84e24.13) Carravieri et al., 2014b; this study
Antipodean albatross Antipodes 15 21.87± 9.27 (9.22e41.93) This study
Gibson's albatross Auckland 15 29.50± 8.17 (16.85e50.09) This study
Amsterdam albatross Amsterdam 18 34.60± 12.50 (18.57e70.63) This study
Tristan albatross Gough 59 30.2± 15.6 Thompson et al., 1990

27 28.00± 14.31 (10.80e65.50) Thompson et al., 1993
12 24.96± 6.85 (15.74e35.74) This study

Southern royal albatross Campbell 22 11.52± 13.86 (1.95e45.46) Thompson et al., 1993
Auckland 15 11.78± 8.14 (2.33e27.57) This study

Northern royal albatross Chatham 20 11.40± 6.46 (3.50e26.27) This study
Phoebastria spp.
Black-footed albatross Midway 17 19.60± 1.75 Burger and Gochfeld, 2000a,b
Laysan albatross Midway 13 3.46± 0.39 Burger and Gochfeld, 2000a,b

10 1.86± 0.35 Burger and Gochfeld, 2000c
Large Thalassarche spp.
Shy albatross Tasmania 8 7.42± 2.82 (5.26e13.12) This study
White-capped albatross Auckland 31 11.99± 4.67 (3.87e20.80) This study
Salvin's albatross Snares 15 5.59± 3.36 (2.04e15.60) This study

Bounty 16 7.39± 4.96 (2.68e22.16) This study
Chatham albatross Chatham 11 11.46± 6.65 (2.32e23.10) This study
Small Thalassarche spp.
Black-browed albatross Falklands 30 2.68± 1.22 (1.00e6.64) Thompson et al., 1993

South Georgia 20 4.57± 1.98 (1.41e9.14) Thompson et al., 1993
16 5.39± 2.05 Becker et al., 2002
16 8.35± 2.63 (4.24e12.97) Anderson et al., 2009
10 6.86± 2.87 (4.31e12.76) This study

Kerguelen 33 4.07± 1.78 (1.71e7.75) Carravieri et al., 2014b; this study
Heard 8 9.93± 6.61 (2.60e19.63) This study

Campbell albatross Campbell 35 10.06± 4.40 (3.52e19.54) Thompson et al., 1993
20 12.03± 5.33 (3.59e22.31) This study

Southern Buller's albatross Snares 15 4.32± 0.96 (2.69e6.31) This study
Northern Buller's albatross Chatham 20 4.62± 3.53 (2.18e16.11) This study
Atlantic yellow-nosed albatross Gough 10 4.22± 1.68 (2.27e7.97) Becker et al., 2016

12 3.82± 1.14 (2.12e5.40) This study
Indian yellow-nosed albatross Prince Edward 10 5.88± 2.63 (2.43e11.84) This study

Amsterdam 20 3.96± 1.57 (1.93e8.69) This study
Grey-headed albatross South Georgia 34 4.20± 2.27 (1.22e11.00) Thompson et al., 1993

19 8.93± 2.85 Becker et al., 2002
15 9.50± 2.84 (4.34e13.24) Anderson et al., 2009
10 7.35± 7.57 (2.12e28.25) This study

Prince Edward 11 7.12± 3.21 (3.00e14.07) This study
Campbell 30 6.91± 2.40 (3.10e13.63) Thompson et al., 1993

20 9.50± 3.11 (3.79e15.53) This study
Phoebetria spp.
Sooty albatross Gough 7 9.4± 3.9 Thompson and Furness, 1989b

40 6.7± 4.2 Thompson et al., 1990
32 6.16± 4.23 (1.42e16.13) Thompson et al., 1993
5 17.69± 3.64 (13.72e23.00) Becker et al., 2016
13 13.67± 4.84 (1.76e20.09) This study

Prince Edward 14 21.86± 7.04 (8.78e32.97) This study
Crozet 12 21.32± 8.58 (7.41e35.36) This study
Amsterdam 22 24.92± 5.49 (14.37e36.37) This study

Light-mantled albatross South Georgia 11 9.08± 6.36 (1.90e19.18) This study
Prince Edward 7 9.61± 6.65 (2.55e19.84) This study
Crozet 10 11.84± 7.38 (2.02e20.59) This study
Kerguelen 16 9.47± 3.78 (2.31e14.22) Carravieri et al., 2014b; this study
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Fig. 1. Location of sampled albatross breeding populations and of the main oceanic fronts and zones of the Southern Ocean and fringing waters. Abbreviations: AZ, Antarctic Zone;
PF, Polar Front; SAZ, Subantarctic Zone; STF, Subtropical Front; STZ, Subtropical Zone.
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between Hg exposure and the foraging ecology of albatrosses
during the inter-breeding period.

2.3. Mercury and stable isotope analyses

THg concentrations, d13C and d15N values were measured on the
same individual body feathers. Feathers were first cleaned to
remove surface contaminants using a 2:1 chloroform:methanol
solution followed by two methanol rinses. They were then oven
dried for 48 h at 50 �C. Feather samples (1e5mg dry weight, dw)
were analyzed for THg with an Advanced Mercury Analyzer spec-
trophotometer (Altec AMA 254) (Bustamante et al., 2006). The
analyses were repeated in duplicate or triplicate until the relative
standard deviation was <10% for multiple aliquots. Tort-2 Lobster
Hepatopancreas, NRC, Canada (THg concentration: 0.27± 0.06 mg/g
dw) was used as Certified Reference Material (CRM) to check the
accuracy of the method. After adjusting the CRM mass to represent
the same amount of THg in reference samples as in those from
feathers, our measured values for CRM averaged 0.273± 0.008 mg/g
dw (n¼ 53), thus corresponding to a recovery rate of 101± 3%.
Blanks were analyzed at the beginning of each set of samples, and
the detection limit of the method was 0.005 mg/g dw. Feather THg
concentrations are presented relative to the dry weight.

For isotopic analyses, ~0.4mg subsamples of the feather ho-
mogenates were weighed in tin cups. A continuous flow mass
spectrometer (Thermo Scientific Delta V Advantage) was coupled to
an elemental analyzer (Thermo Scientific Flash EA 1112) to measure
feather d13C and d15N values, and feather carbon and nitrogen
contents, respectively. Stable isotope ratios are expressed using
standard d notation relative to carbonate Vienna PeeDee Belemnite
and atmospheric nitrogen. The internal laboratory standards were
acetanilide. Observed analytical errors were <0.10‰ for both d13C
and d15N values. The data on feather THg concentrations of alba-
trosses from the Kerguelen Islands, and most of the data presented
here on feather d13C and d15N values are already published, but in
distinct scientific contexts (Cherel et al., 2013; Carravieri et al.,
2014b). Values are means± SD.

2.4. Statistical analyses

The effects of species, phylogeny (Diomedea, large Thalassarche,
small Thalassarche, Phoebetria), breeding frequency, breeding
location, oceanographic zone (Table S1), ocean basin (Indian, Pa-
cific, Atlantic), and foraging habitat and trophic level during moult
(d13C and d15N, respectively) on feather THg concentrations (516
feathers from 516 individuals from 35 populations) were investi-
gated using non-parametric smoothing regression techniques.
While body condition is a main driving factor of avian THg con-
centrations (Fort et al., 2015), its effect was not tested because
moult occurs at sea, thus precluding handling albatrosses at that
time.

We used Generalised Additive Mixed Models (GAMM) in order
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to model potential non-linear relationships between THg concen-
trations and covariates, and to account for pseudo-replication.
Indeed, our sampling unit was the population (n¼ 35, Table S1),
represented by several individuals (mean of 15± 6, range 7e33).
Population was thus modelled as a random effect in the GAMM.
Data exploration was first carried out following Zuur et al. (2009).
We then used variance inflation factors to assess which explanatory
variables were collinear and should be dropped, based on a cut-off
value of 4 (Zuur et al., 2009). The following was then considered as
a starting model:
Fig. 2. Concentrations of total mercury (THg) in body feathers of albatrosses from the Sout
increasing feather THg concentrations. Limited data for THg concentrations in feathers indic
(Burger and Gochfeld, 1997; Evers et al., 2008). Colour and symbols: red circles (Diomede
Thalassarche spp.), green diamonds (Phoebetria spp.). Abbreviations are detailed in Table S
legend, the reader is referred to the Web version of this article.)
THg ~ s(d13C) þ s(d15N) þ species þ phylogeny þ breeding
frequency þ breeding location þ oceanographic zone þ ocean
basin þ two-way interactions between all categorical
variables þ random(population).

We then searched for the optimal model in terms of the
explanatory variables and their interactions using a top-down
strategy removing terms with non-significant p-values (signifi-
cance level of a< 0.01). The GAMM models (‘gamm4’ library,
version 0.2e4) were specified with a Gaussian family and a
penalized thin plate regression spline, the optimal span for
hern Ocean and fringing subtropical waters. Albatross taxa are placed in a sequence of
ate a range of 5e40 mg/g (dotted lines) as being associated with adverse effects in birds
a albatrosses), grey triangles up (large Thalassarche spp.), blue triangles down (small
1. Values are means ± SD. (For interpretation of the references to colour in this figure
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smoothing was determined by AIC, and the smoothing parameters
estimated using restricted maximum likelihood (Wood, 2003; Zuur
et al., 2009). The adjusted R-squared for the model was defined as
the proportion of variance explained, where original variance and
residual variance were both estimated using unbiased estimators.
Model validation was performed by inspecting the relationship
between residuals and fitted values (Zuur et al., 2009). GAMM
analyses were performed using R 3.3.2 (R Development Core Team,
2016) and other statistical analyses using SYSTAT 13 for WINDOWS
(Systat Software, Chicago).
3. Results

THg concentrations varied 49-fold within the whole data set
(618 body feathers), with the lowest value in a light-mantled al-
batross from the Kerguelen Islands and the highest in an Amster-
dam albatross from Amsterdam Island (1.4 and 70.6 mg/g dw,
respectively). All measurements of feather THg were >1 mg/g, of
Table 2
GAMM results for feather THg concentrations as a function of covariates for the
optimal model (516 sampled individuals from 35 populations). Variance compo-
nents plus their SD are shown for random effects; edf indicates the estimated de-
grees of freedom for the smooth terms.

Effect Estimate SD t-test edf F-test p

Fixed effects
Intercept 3.177 0.168 18.902 <0.001
Phylogeny �0.341 0.058 �5.842 <0.001
s(d13C) 2.738 10.26 <0.001
s(d15N) 7.385 14.15 <0.001
Random effects
Population 0.159 0.399
Residual 0.167 0.408

Fig. 3. Histograms of feather total mercury (THg) concentrations in relation to albatross ph
H¼ 219.89, p< 0.001; superscript letters indicate results from Conover-Inman tests for pair
are means ± SD.
which 74.1% and 1.1% were >5 mg/g and >40 mg/g, respectively,
which are the two most widely used toxicity thresholds for feather
THg (Burger and Gochfeld, 1997; Evers et al., 2008). Notably, all of
the seven most THg-contaminated feathers (>40 mg/g) were from
Diomedea albatrosses, including four Amsterdam albatrosses. At the
population level (n¼ 35), THg concentrations varied nine-fold,
with mean values ranging from 3.8 mg/g in Atlantic yellow-nosed
albatross to 34.6 mg/g in Amsterdam albatross (Fig. 2, Table S1).
Accordingly, feather THg concentrations differed significantly be-
tween populations (Kruskal-Wallis, H¼ 353.3, p< 0.0001).

Results from the optimal GAMMmodel are presented in Table 2.
Of the fixed factors, species, breeding frequency, breeding location,
oceanographic zone and ocean basin were not retained, but phy-
logeny and feather d13C and d15N values had significant effects on
feather THg concentrations. THg concentrations differed between
albatross taxa, from 6.4± 4.4 mg/g in small Thalassarche species to
21.9± 11.0 mg/g in Diomedea spp. (Fig. 3). Feather THg concentra-
tions were positively related to feather d13C values (Fig. 4) and the
estimated degree of freedom of the smooth term (2.74) indicated a
near-linear effect. In contrast, the relationship between feather
d15N and THg concentrations was clearly non-linear (Fig. 4). The
overall deviance explained by the optimal model was 49.5%. The
population random effect explained 48.9% of the total variance of
the residuals. There was no pattern between the residuals and the
fitted values.

As expected, feather d13C values ranged widely in the three
populations for which isotopic values and THg concentrations were
determined on four body feathers per bird. Grey-headed, sooty and
light-mantled albatrosses moulted over a large latitudinal gradient
from Antarctica to the subtropics, with considerable variation both
within and between individuals (Table 3, Fig. 5). Two features are
notable: (i) all feathers that were grown in the AZ contained less
THg than those moulted and regrown further north, and (ii) THg
ylogeny. Large and small Thalassarche species are indicated in Table 1. Kruskal-Wallis,
wise comparisons, all p< 0.0001; see also text and Table 2 for GAMM statistics. Values



Fig. 4. Fitted GAMM results showing the relationship between feather THg concen-
tration and feather d13C and d15N values for the 516 sampled albatrosses. The y-axis
gives the smooth transformed value, and the little vertical lines along the x-axis
indicate the feather THg values of the observations. Dashed lines indicate the 95%
confidence intervals.
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concentrations of feathers grown in the AZ remained low over a
wide range of d15N values. For example, feathers of light-mantled
albatrosses contained 8.8 times more THg if they were grown in
the STZ than in the AZ, with no overlap in feather THg concentra-
tions between the two groups. There was no change in THg con-
centration in feathers grown in the AZ, while their d15N values
ranged from 7.3 to 11.7‰ (a 4.4‰ difference). When feathers grew
in warmer waters, THg concentrations were high, ranged widely
and were associated with higher d15N values (Fig. 5). Conversely,
feathers of grey-headed albatrosses that were grown south and
north of the PF showed no significant difference in mean d15N
values (n¼ 8 and 36, 11.0± 1.1 and 11.8± 1.5‰, respectively, Mann-
Whitney test, U¼ 86.0, p¼ 0.078), but those grown in the AZ
contained 2.4 times less THg than those grown further north
(4.5± 1.2 and 10.9± 6.4 mg/g; U¼ 22.0, p< 0.0001).

4. Discussion

Our key finding is that albatrosses are themost contaminated by
Hg of all families of birds. The present work provides extensive new
data on MeHg exposure in albatrosses from the Southern Ocean,
where most species breed, thus allowing a comprehensive syn-
thesis of the available information on albatrosses worldwide
(Table 1). Two features are notable: (i) THg measurements are ur-
gently needed from two Pacific Phoebastria species, waved alba-
tross and short-tailed albatross (but see Shinsuke et al., 2003), and
(ii) seven (32%) of the albatross species and subspecies present
mean body feather THg concentrations� 20 mg/g, including all five
taxa of the wandering albatross species complex (wandering,
Antipodean, Gibson's, Amsterdam and Tristan albatrosses), sooty
albatross, and black-footed albatross. A review of THg body feathers
emphasizes the exceptionally high contamination levels of alba-
trosses when compared to adult seabirds from the more investi-
gated Northern Atlantic and Northern Pacific (>35�N; from 0.6 to
22.6 mg/g, and from 0.9 to 10.3 mg/g, respectively) (Kim et al., 1996;
Monteiro et al., 1999; Bond and Diamond, 2008; Eagles-Smith et al.,
2009). Only four populations of Procellariidae (closely-related to
Diomedeidae) showed THg levels� 20 mg/g, northern giant petrel
Macronectes halli and great-winged petrel Pterodroma macroptera
from Prince Edward Islands, Atlantic petrel P. incerta from Gough,
and Bulwer's petrel Bulweria bulwerii from the Azores, Madeira and
Salvages (Monteiro et al., 1999; Becker et al., 2016). In contrast,
average THg body feather levels �20 mg/g are very rare in other
avian species, occurring only in a few diurnal and nocturnal raptors
from the more contaminated Northern Hemisphere (Burger, 1993;
Bowerman et al., 1994), and in tern chicks in two highly polluted
areas (Furness et al., 1995; Herring et al., 2012).

Phylogeny explained much of the variation in feather THg con-
centrations in albatrosses; Diomedea species ranked first, and their
body feathers contained on average 3.4 more THg than smaller
Thalassarche species (Fig. 3). The wandering albatross species
complex were the most Hg contaminated taxa, whereas northern
and southern royal albatrosses showed moderate THg levels. These
two groups of Diomedea albatrosses have essentially the same life-
history traits, differing ecologically only in their main feeding
grounds. Royal albatrosses forage primarily in neritic waters,
whereas the wandering albatross and related taxa are essentially
oceanic (Nicholls et al., 2002; Waugh and Weimerskirch, 2003),
which fits well with a pattern of increasing feather THg values from
coastal to oceanic seabirds (Ochoa-acu~na et al., 2002). Phoebetria
albatrosses ranked second, with the differences between the two
species in feather THg concentrations likely explained by con-
trasting distributions; light-mantled albatrosses partlymoult in the
AZ, whereas sooty albatrosses do so further north (see below).
Finally, the lowest feather THg concentrations were found in Tha-
lassarche albatrosses; these are small to medium-sized albatrosses
that are mostly annual breeders and, because they tend to eat more
crustaceans, do not feed at as high trophic levels as the Diomedea
albatrosses (Prince et al., 1993; Cherel and Klages, 1998; Jaeger
et al., 2013). They thus differ from Diomedea and Phoebetria alba-
trosses in several life-history traits, which likely explain the lower
THg concentrations in their feathers (this study), and also in in-
ternal tissues (Stewart et al., 1999).

Feather d15N was also related to THg concentrations, which was
to some extent expected given d15N values is a proxy of trophic
level and hence linked to biomagnification processes within eco-
systems (the higher the trophic position, the higher the MeHg
exposure). However, the relationship was nonlinear (Fig. 4), indi-
cating a more complex relationship involving other confounding
factors, including varying d15N baselines at moulting grounds. The
large range of feather d13C values showed that plumage replace-
ment took place in habitats that varied from Antarctic oceanic
waters to northern coastal upwelling zones, depending on species,
population and individual (Cherel et al., 2013). The different
moulting habitats are likely marked by contrasting d15N baselines



Table 3
Feather d13C and d15N values and total mercury (THg) concentrations in relation to albatross moulting zones (according to the estimated isotopic positions of oceanic fronts in
Jaeger et al., 2010). Stables isotopes and THg were measured on four different body feathers per individual bird. Kruskal-Wallis H tests were performed to compare moulting
zones and species. Significant statistics (p < 0.05) are highlighted in bold. Values are means± SD.

Grey-headed albatross Sooty albatross Light-mantled albatross Kruskal-Wallis

Prince Edward Gough Kerguelen H tests

(n¼ 11) (n¼ 13) (n¼ 10)

Antarctic Zone
Feathers (n) 8 9 13
Feather d13C (‰) �22.2± 0.6 �22.5± 0.4 �25.3± 1.5 H ¼ 17.3, p < 0.0001
Feather d15N (‰) 11.0± 1.1 8.7± 0.7 9.1± 1.3 H ¼ 12.2, p ¼ 0.002
Feather THg (mg/g dry mass) 4.5± 1.2 4.6± 2.8 2.2± 0.6 H ¼ 14.8, p ¼ 0.001
Subantarctic Zone
Feathers (n) 25 34 20
Feather d13C (‰) �19.7± 0.7 �19.0± 0.4 �19.6± 0.6 H ¼ 21.6, p < 0.0001
Feather d15N (‰) 11.6± 1.6 13.4± 0.7 13.3± 0.4 H ¼ 21.6, p < 0.0001
Feather THg (mg/g dry mass) 11.9± 7.3 14.7± 3.9 14.4± 5.6 H ¼ 7.0, p ¼ 0.031
Subtropical Zone
Feathers (n) 11 9 7
Feather d13C (‰) �17.2± 0.5 �17.8± 0.3 �17.5± 0.3 H ¼ 7.4, p ¼ 0.025
Feather d15N (‰) 12.3± 1.1 14.2± 0.5 14.4± 0.3 H ¼ 12.9, p ¼ 0.002
Feather THg (mg/g dry mass) 8.8± 2.7 14.0± 4.2 19.4± 7.5 H ¼ 11.7, p ¼ 0.003
Kruskal-Wallis H tests
Feather d13C (‰) H ¼ 34.2, p < 0.0001 H ¼ 36.2, p < 0.0001 H ¼ 32.6, p < 0.0001
Feather d15N (‰) H¼ 4.3, p¼ 0.116 H ¼ 29.9, p < 0.0001 H ¼ 32.4, p < 0.0001
Feather THg (mg/g dry mass) H ¼ 14.01, p ¼ 0.001 H ¼ 19.5, p < 0.0001 H ¼ 26.6, p < 0.0001
All three oceanic zones
Feathers (n) 44 52 40
Feather d13C (‰) �19.5± 1.8 �19.4± 1.6 �21.1± 3.2 H ¼ 8.2, p ¼ 0.016
Feather d15N (‰) 11.7± 1.4 12.7± 2.0 12.1± 2.3 H ¼ 14.2, p ¼ 0.001
Feather THg (mg/g dry mass) 9.8± 6.3 12.8± 5.3 11.3± 8.3 H ¼ 8.9, p ¼ 0.012
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that propagate up the food webs and thus raw d15N values do not
directly indicate relative trophic level. For example, the d15N
baseline varies little within the Southern Ocean but increases
sharply at the STF, remaining elevated further north (Altabet and
François, 1994), and the d15N baseline varies significantly within
the Humboldt Current where many albatrosses moult (Mollier-
Vogel et al., 2012; Cherel et al., 2013).

Another key finding of the present study was the major influ-
ence of feather d13C values, which reflect moulting habitat, on
feather THg concentration in albatrosses. Conversely, breeding lo-
cality, oceanographic zone and ocean basin during breeding did not
show significant relationships with feather THg concentration. This
is presumably related largely to the timing of body feather moult,
which takes place during the inter-breeding period. Importantly,
our results indicate that in albatrosses, body feather THg concen-
tration integrates predominantly very short-term MeHg intake at
the temporal scale of a single growing body feather (Fig. 5).
Consequently, there is no temporal mismatch between feather
stable isotopic values and THg concentrations, all three parameters
reflecting the feeding habits of albatrosses during feather growth.
Hence, unlike feathers frommost birds (Furness et al., 1986; Braune
and Gaskin, 1987; Bond, 2010), body feathers of albatrosses carry
information about MeHg availability on themoulting grounds, with
differences in the carbon source reflected in d13C values.

Furthermore, it follows that because albatross body feather THg
concentrations reflect MeHg intake over the time of feather growth,
feather THg concentrations do not fully reflect MeHg accumulation
over the long-term. Thus, plumage renewal in albatrosses does not
appear to be a mechanism by which much of MeHg accumulated
during the inter-moult period can be eliminated, unlike many other
bird species that excretemost ingested and storedMeHg into newly
grown feathers (Burger, 1993; Monteiro & Furness, 1995). Conse-
quently, a critical issue for albatrosses is the fate of ingested MeHg,
specifically in order to cope with potentially toxic effects. Since
albatrosses are known to efficiently demethylate MeHg, we
propose that they use two complementary detoxification mecha-
nisms: (i) during moult, dietary MeHg is primarily eliminated
directly into the keratin of growing feathers, and (ii) outside the
moulting period, MeHg is continuously converted to iHg in the liver
where it accumulates. These two mechanisms explain: (i) why
feather THg does not increase with age in albatrosses (Thompson
et al., 1993; Tavares et al., 2013; Bustamante et al., 2016), (ii) the
records of exceptionally high liver THg concentrations, with a large
predominance of iHg over MeHg, in some (presumably old) indi-
vidual albatrosses (Honda et al., 1989; Thompson and Furness,
1989a; Kim et al., 1996; Stewart et al., 1999), and (iii) the much
lower THg burden in feathers (<10%) than in the whole body,
indicating that THg excretion during the moult is negligible in al-
batrosses (Honda et al., 1989; Kim et al., 1996).

We conclude that two strategies to deal with ingested MeHg
operate in birds and we propose to call them the income and capital
strategies in reference to the previous definition of those terms in
the management of energy for breeding (Jonsson, 1997). Birds
adopting the income strategy (e.g. albatrosses) convert ingested
MeHg to iHg in the liver outside the moulting period and only
eliminate MeHg ingested during feather growth into newly
growing feathers. In species using the capital strategy (e.g. gulls;
Braune and Gaskin, 1987), most feather MeHg comes from the
accumulation of dietary MeHg into the body reservoir during the
period between successive moults. A consequence of the capital
strategy is that, unlike in albatrosses, feathers grown by these other
species contain a major part (56e94%) of the THg burden of the
whole body, indicating that they are the endpoint in a primary
pathway for THg elimination (Burger, 1993; Monteiro and Furness,
1995). The concept of income and capital strategies requires further
investigation, especially because some birds probably fall some-
where along an income-capital continuum. Albatrosses stands at
the income end of the spectrum, and the income strategy is likely to
be the prominent strategy in seabirds for which the moulting
habitat affects feather THg concentrations (Fort et al., 2014;



Fig. 5. Total mercury (THg) versus d13C (a proxy of moulting habitat) and d15N (a proxy of trophic position) in feathers of light-mantled albatrosses from Kerguelen Islands. THg
concentrations and d13C and d15N values were measured in four different body feathers per individual (one different colour per bird). Following Jaeger et al. (2010), dashed lines
correspond to the isotopic estimation of the Polar Front (PF) and of the Subtropical Front (STF), which delimit the Antarctic (AZ), Subantarctic (SAZ) and Subtropical (STZ) Zones;
LMSA, light-mantled albatross. Diamonds and circles indicate feathers that grew in the Antarctic Zone and further north, respectively. (For interpretation of the references to colour
in this figure legend, the reader is referred to the Web version of this article.)
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Watanuki et al., 2016).
Overall, feather d13C values were near-linearly and positively

related to feather THg concentrations (Fig. 4). Hence, Hg exposure is
higher for albatrosses moulting in warmer, more northerly, than
colder, more southerlywaters, because both baseline and consumer
d13C values vary with latitude; the higher the latitude, the lower the
d13C values (Cherel and Hobson, 2007; Phillips et al., 2009; Jaeger
et al., 2010; Quillfeldt et al., 2010). This relationship held both be-
tween and within individual birds. While all body feathers of grey-
headed, sooty and light-mantled albatrosses grown in the STZ and
the SAZ had elevated THg levels, feathers grown in the AZ showed
consistently low THg concentrations (Fig. 5). Surprisingly, feather
THg concentrations remained low whatever their corresponding
d15N values, indicating that habitat is much more important than
trophic level whenmoulting in the AZ. The large feather d15N range
suggests that albatrosses fed on prey from low trophic levels
(probably including Antarctic krill Euphausia superba) in southern
Antarctic waters to high trophic levels (fish and squid) south of the
PF, but with no concomitant feather THg increase. The primary
importance of feeding latitude on Hg levels is highlighted by intra-
and inter-individual variation in moulting grounds. Some in-
dividuals (e.g. light-mantled albatrosses shown in green and pink
on Fig. 5) replaced their plumage in various oceanic zones, resulting
in contrasting THg concentrations. Other individuals moulted over
a more restricted latitudinal range, and consequently, levels of Hg
contamination of birds moulting in the AZ were approximately ten
times lower than in those moulting further north (e.g. the cyan vs.
red individuals, 2.1 vs. 19.9 mg/g; Fig. 5).

Our data confirm that exposure to MeHg of top predators
decreased with increasing latitude in the Southern Ocean
(Carravieri et al., 2014a, 2016, 2017). Moreover, they show a step-
wise drop in MeHg availability at the PF, thus suggesting that the PF
acts as an oceanographic barrier (Guynn and Peterson, 2008).
Lower Hg contamination in predators feeding in the AZ in our study
contrasts with earlier work on Hg in the Southern Ocean, which
showed higher MeHg concentrations available at shallower depths
inwaters to the south, compared to the north, of the PF (Cossa et al.,
2011). Two non-exclusive explanations for this apparent mismatch
between the base and the top of the trophic web merit further
investigations: (i) amore complex oceanic foodweb involvingmore
trophic levels and thus higher MeHg biomagnification processes in
warmer (northern) than colder (southern) waters, and (ii) a higher
MeHg enrichment within the trophic web due to higher production
of MeHg by pelagic organisms (Pucko et al., 2014) to the north of
the PF.

5. Conclusions

Overall, albatrosses clearly illustrate how elevated THg levels in
avian species are governed by a combination of several factors,
specifically (i) foraging grounds marked by high MeHg bioavail-
ability (temperate waters) and (ii) feeding at the top of trophic
webs (maximal biomagnification). The Diomedeidae is among the
world's most threatened families of birds, will all the 22 species
classified from Near Threatened to Critically Endangered in the
IUCN Red List (Table S1). They face a number of direct and indirect
threats that are causes of population declines, including climate
change, fishery-related mortality, infectious diseases, introduced
predators, and pollutants (Phillips et al., 2016). In this context, it is
noteworthy that two of the three Critically Endangered species
were also the most contaminated by Hg (Amsterdam and Tristan
albatrosses), and that information is lacking on the third species
(waved albatross). It is especially relevant that most individuals
with THg levels above the upper feather toxicity threshold (40 mg/g;
Burger and Gochfeld, 1997; Evers et al., 2008) were breeding
Amsterdam albatrosses, the rarest albatross on Earth with a single
population of approximately 165 adults (C. Barbraud et al., un-
published data). The whole population of Amsterdam albatrosses is
at risk, because chicks are also heavily contaminated, with body
feather concentrations averaging 7.8 mg/g (Y. Cherel et al., unpub-
lished data).

One of the main problems in environmental toxicology is to
interpret the impact of observed contaminant concentrations on
wildlife. Most adult albatrosses have THg levels above the lower
feather toxicity threshold (5 mg/g; Fig. 2), but seabirds are expected
to have higher toxicity resistance than other avian taxa since they
cope with relatively high MeHg ingestion through efficient hepatic
demethylation processes (Thompson and Furness, 1989a; Ikemoto
et al., 2004). However, pioneering investigations on the biological
consequences of Hg contamination pointed out (i) negative effects
of blood THg on the immune function of black-footed albatrosses
(Finkelstein et al., 2007), and (ii) negative effects of blood THg on
demographic parameters of wandering albatrosses (Goutte et al.,
2014). These data emphasize the urgent need for robust assess-
ment of the impact of Hg exposure on the physiology and
demography of albatrosses at a species, population and individual
level, because Hg loading to the World Ocean is likely to continue
rising (Lamborg et al., 2014), thus driving an increase accumulation
of Hg in the biota, including albatrosses (Vo et al., 2011; Becker
et al., 2016).
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