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A B S T R A C T

Coastal seabirds serve as sentinels of ecosystem health due to their vulnerability to contamination from human
activities. However, our understanding on how contaminant burdens affect the physiological and health con-
dition of seabirds is still scarce, raising the uncertainty on the species’ vulnerability vs tolerance to environmental
contamination. Here, we quantified 15 Trace Elements (TE) in the blood of gull (yellow-legged gull Larus
michahellis and Audouin’s gull Ichthyaetus audouinii) and shearwater (Cory’s shearwater Calonectris borealis)
adults, breeding in five colonies along the Portuguese coastline. Additionally, stable isotopes of carbon (δ13C) and
nitrogen (δ15N) were quantified to elucidate foraging habitat and trophic ecology of adults, to identify potential
patterns of TE contamination among colonies. We used immuno-haematological parameters as response vari-
ables to assess the influence of TE concentrations, stable isotope values, and breeding colony on adults’ physi-
ological and health condition. Remarkably, we found blood mercury (Hg) and lead (Pb) concentrations to exceed
reported toxicity thresholds in 25% and 13% of individuals, respectively, raising ecotoxicological concerns for
these populations. The breeding colony was the primary factor explaining variation in five out of six models,
underlining the influence of inherent species needs on immuno-haematological parameters. Model selection
indicated a negative relationship between erythrocyte sedimentation rate and both Hg and selenium (Se) con-
centrations, but a positive relationship with δ13C. The number of immature erythrocyte counts was positively
related to Hg and Se, particularly in yellow-legged gulls from one colony, highlighting the colony-site context’s
influence on haematological parameters. Further research is needed to determine whether essential TE con-
centrations, particularly copper (Cu) and Se, are falling outside the normal range for seabirds or meet species-
specific requirements. Continuous monitoring of non-essential TE concentrations like aluminium (Al), Hg, and
Pb, is crucial due to their potential hazardous concentrations, as observed in our study colonies.

1. Introduction

Over the past century, marine ecosystems have faced cumulative
threats due to the worldwide intensification of anthropogenic distur-
bances. The overexploitation of metal ores for several human activities

(mining, metallurgical industry, construction) has led to growing con-
centrations of trace elements (TEs) in the marine environment (Rauch
and Pacyna, 2009; Sen and Peucker-Ehrenbrink, 2012). TEs can readily
integrate marine food webs through different mechanisms: via adsorp-
tion onto suspended particles or dissolved organic matter, via their
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uptake by microorganisms and phytoplankton, or directly from the
water through gills and skin (Budko and Martynova, 2019; Galindo
et al., 2012). Once prey are ingested, TEs can be assimilated through the
intestine in marine consumers and be transferred from lower trophic
levels to higher trophic levels (Szynkowska et al., 2018). Thus, TEs may
undergo bioaccumulation within consumers over time, and some of
these elements like mercury (Hg) can also undergo biomagnification
throughout food webs (Seco et al., 2021). This process can lead to
harmful TE concentrations in top predators, such as seabirds (Bearhop
et al., 2000; Campbell et al., 2005).

Seabirds are likely to be contaminated by TEs mainly through their
diet (Correia et al., 2023; Fromant et al., 2016). Coastal seabirds are
especially vulnerable to contamination by TEs due to increased
anthropogenic activities, such as the growing urbanisation and the in-
crease in the number of fishing vessels, which have contributed to the
increased release of elements into their foraging habitats (e.g., cadmium
(Cd), copper (Cu), nickel (Ni), lead (Pb), zinc (Zn); Richir and Gobert
2016; Richir et al., 2021; Ye et al., 2022). This makes coastal seabirds
good for biomonitoring local-scale contamination (Correia et al., 2023;
Jouanneau et al., 2022; Thorne et al., 2021). Notably, Hg concentrations
have been linked to a higher reliance on marine prey by seabirds
(Anderson et al., 2009; Bustamante et al., 2016; Jouanneau et al., 2022).
Meanwhile, Pb concentrations have been positively correlated with a
higher exposure to urbanised environments (Bauerová et al., 2017;
Callendar and Rice, 2000; Hitt et al., 2023). Blood is useful for assessing
short-term exposure to contaminants, e.g., during the breeding season (i.
e, when seabirds are accessible for sampling; Jouanneau et al., 2022;
Laranjeiro et al., 2021), and may be a good proxy of contamination in
other internal tissues (see Albert et al., 2019 for Hg). Also, the use of
stable isotopes of carbon (δ13C) and nitrogen (δ15N) as proxies of
foraging habitat and trophic position, respectively, has proven valuable
in unravelling sources of contamination in seabirds, highlighting
geographical and species-specific variations in the bioaccumulation of
contaminants (Anderson et al., 2010; Carravieri et al., 2020, 2017;
Laranjeiro et al., 2020).

While considerable attention has been directed towards blood Hg
and its toxicity in seabirds (see the reviews of Ackerman et al., 2016;
Chastel et al., 2022), our understanding of the exposure of seabirds to
essential TEs – Cu, iron (Fe), selenium (Se), and Zn – or non-essential
elements such as Cd and Pb remains limited (but see Carravieri et al.,
2020, 2017, 2014; Carvalho et al., 2013; Laranjeiro et al., 2021;
Sebastiano et al., 2017, 2016; Voulgaris et al., 2019). Essential TEs play
crucial roles in biological processes, within a specific range of concen-
trations, but can become double-edge swords when deviating from their
optimal range. For instance, Se is required as a cofactor for enzymes that
fight oxidants, e.g., glutathione peroxidase, which protect organisms
against oxidative stress (Gamble et al., 1997). However, excessive levels
of Se can be toxic to birds, leading to adverse effects during embryonic
development (Spallholz and Hoffman, 2002), impaired immunity, and
teratogenesis (Franson et al., 2000; Janz et al., 2010). Additionally, Se is
recognized for its capacity to mitigate Hg toxicity by obstructing Hg
binding sites, forming an insoluble and inorganic selenous form – mer-
cury selenide – thereby hindering Hg interaction with organic molecules
(Manceau et al., 2021; Nigro and Leonzio, 1996). Thus, it is recom-
mended to consider Se alongside Hg, employing the Se:Hg molar ratio,
when assessing the impacts of Hg and its associated toxicity risks to
wildlife (Carravieri et al., 2017; Cruz-Flores et al., 2024; Goutte et al.,
2014a).

Conversely, non-essential TEs can be toxic at very low doses; for
instance, seabirds with blood-equivalent Hg concentrations above 0.95
μg g− 1 dry weight (dw) (i.e., 0.2 μg g− 1 wet weight, ww; Ackerman et al.,
2016) showed higher rates of egg neglect (Tartu et al., 2015a), a 50%
reduction in fledging success (Tartu et al., 2015b), and reduced breeding
success in the subsequent year (Goutte et al., 2014a, b). Indeed, several
adverse health impacts stemming from excess TE concentrations,
beyond Hg, have been documented in terrestrial and aquatic birds (see

Ancora et al., 2008; Pain et al., 2019; Vallverdú-Coll et al., 2019). Some
frequently reported sub-lethal effects include immune system disruption
(Ibañez et al., 2024; Vallverdú-Coll et al., 2019), physiological impair-
ment (Bauerová et al., 2020, 2017), oxidative stress (Costantini et al.,
2014; Espín et al., 2014a, 2014b), or mortality when reaching lethal
concentrations (De Francisco et al., 2003; Pain et al., 2019). For
instance, higher blood concentrations of arsenic (As), Cd, chromium
(Cr), Cu, and Pb were linked to decreased absolute erythrocyte counts
and increased haematopoiesis (evidenced by increased immature
erythrocyte frequencies) in the great tit Parus major (Bauerová et al.,
2017). This may reduce haemoglobin (Hb) concentrations, impairing
the oxygen-carrying capacity of adults (Minias, 2015), which was also
reported for urban and suburban bird populations (Goodchild et al.,
2022; Herrera-Dueñas et al., 2014). In another study, urban-living great
tits with increased concentrations of Cd, Pb, and Zn exhibited increased
total leukocyte counts and heterophil/lymphocyte ratio (H/L)
(Bauerová et al., 2020), a general indicator of stress (Norte et al., 2022)
which also increases in response to infection (Davis et al., 2008). Yet, the
effects may vary according to the contaminant, the level of exposure,
and species-specific tolerance to contaminants (e.g., Espín et al., 2016),
underlining that the ecological context of the species/population must
be considered.

In this study, we quantified TE concentrations in adults of three
seabird species: yellow-legged gull (Larus michahellis), Audouin’s gull
(Ichthyaetus audouinii), and Cory’s shearwater (Calonectris borealis) in
five colonies located in the west and south coasts of Portugal, comprising
four natural colonies and one urban colony. Yellow-legged gulls are
generalist, highly opportunistic, and exhibits a mixed-foraging strategy
taking advantage of both marine and terrestrial resources (Calado et al.,
2021; Pais de Faria et al., 2021b). Within urban colonies, these gulls
heavily rely on anthropogenic-derived resources such as urban waste or
items sourced from landfills (Fernandes, 2022; Pais de Faria et al.,
2021b). In natural colonies, while they may also forage in nearby
landfills, they primarly rely on marine prey, acquired either naturally or
through interactions with fishing vessels, i.e., fishery discards (Calado
et al., 2021). In contrast, Audouin’s gulls and Cory’s shearwaters are
strict marine foragers, although they exploit different marine habitats:
Audouin’s gulls predominantly forage within coastal marine habitats
(Matos et al., 2018), whereas Cory’s shearwaters use both coastal ma-
rine (i.e., neritic regions) and oceanic habitats (Paiva et al., 2010; Per-
eira et al., 2020). Consequently, their diets reflect these differences, with
Audouin’s gulls primarily consuming pelagic fish, occasionally supple-
mented by demersal fish sourced from fishery discards (Calado et al.,
2021; Matos et al., 2018), while Cory’s shearwaters target epipelagic
fish, although cephalopods may also constitute a significant part of their
diet (Alonso et al., 2014; Paiva et al., 2010).

This study capitalised on the diverse foraging strategies of these
three species to investigate TE exposure across geographically proxi-
mate seabird colonies and evaluate potential impacts on adults’ physi-
ology. The two main objectives were: firstly, to determine the blood TE
concentrations in adults across five colonies, compare them with closely
related species occupying similar ecological niches, and highlight
geographical exposure patterns. Secondly, to evaluate the potential
impacts of TEs on adults’ physiological condition using general immuno-
haematological parameters. Using yellow-legged gulls breeding in
different colonies facilitated the comparison of TEs contamination be-
tween urban vs natural ecological contexts, while Audouin’s gulls and
Cory’s shearwaters enabled comparisons among species, but most
importantly, between coastal marine vs oceanic habitats. We expect
species and colony to influence blood TE concentrations and immuno-
haematological parameters. Specifically, yellow-legged gulls breeding
in urban environments should have elevated concentrations of Cd, Ni,
and Pb which are related to industrial processes, urban runoff, and
historical use of leaded gasoline (Ye et al., 2022). These elevated TE
concentrations may alter physiological and immune responses, evi-
denced by decreased Hb concentrations, increased immature
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erythrocyte counts, and higher H/L ratios (e.g., Bauerová et al., 2020,
2017). Conversely, we expect higher concentrations of As, Hg, and Se in
strictly marine foragers, especially those relying on fishery discards,
such as gulls breeding in natural colonies (Calado et al., 2021). Addi-
tionally, Cory’s shearwaters should exhibit higher Cd concentrations
due to the inclusion of cephalopods in their diet (Bustamante et al.,
1998). Elevated levels of As, Cd, and Hg concentrations may increase the
incidence of genotoxic events, particularly on erythrocytes, leading to
nuclear abnormalities. Overall, this study contributes to provide base-
line values of haematological parameters in wild seabirds, as well as new
information about the TEs toxicity thresholds in these species.

2. Materials and Methods

2.1. Study areas and study species

Fieldwork was carried out during the 2021 breeding season at three
locations along the West and South coast of Portugal (Fig. 1): Porto
(41◦08′N, 8◦36′W), a large urban and industrial area, that lies ~8 km
from a major fishing harbour (Matosinhos); Berlenga Island (39◦24′N,
9◦30′W), a small neritic island that lies ~11 km from Peniche, a small
city with a medium-sized fishing harbour; Deserta Island (36◦57′N,
7◦53′W), an uninhabited sandy island sited within the lagoon system of
Ria Formosa, Algarve, that lies ~7 km from a large fishing harbour
(Olhão). Yellow-legged gull (YLG) breeds in all study sites, although
population densities are largely different among breeding colonies:
593–813 breeding pairs in Porto, ca. 2400 breeding pairs in Berlenga
Island, and ca. 540 breeding pairs in Deserta Island (Oliveira et al.,
2023). The colony of Porto represented an urban population (Fernandes,

2022), the colony of Deserta represented a coastal population with a
pronounced mixed-foraging strategy (Matos et al., 2018), and the colony
of Berlenga represented a coastal population but with a marine based
foraging strategy (Mendes et al., 2018). Audouin’s gull (AG) only breeds
in Deserta Island, with a current increase of its breeding population, ca.
5340 breeding pairs (ICNF, unpublished data), while Cory’s shearwater
(CS) only breeds in Berlenga Island and has a current stable population
of ca. 300 breeding pairs (Oliveira et al., 2020).

2.2. Fieldwork and sample collection

At each breeding colony, incubating gulls were caught using a
walking trap placed over the nest (from late April in Deserta Island to
early and late May in Berlenga Island and Porto, respectively), while
shearwaters were caught by hand at night, during the chick-rearing
period (in late August), when adults return to their nesting burrow to
feed their chick. All birds handled were ringed (N = 75), weighted using
a Pesola Spring© balance (±5 g), measured with a calliper (tarsus, ±1
mm), and a ruler (flattened wing, ±1 mm). A blood sample (0.8–1.2 mL,
<2% of the body mass of AG, the smallest species in this study) was
collected from the tarsal vein using heparinized syringes coupled to a
25-G needle, transferred into a 1.5 mL microtube, and immediately
stored in a cool box. At the end of the day, blood was centrifuged and
stored at − 20 ◦C. Additionally, two heparinized capillary tubes of whole
blood (~150 μL) were collected for the analysis of immuno-
haematological parameters (see below for a more detailed description).

Fig. 1. Locations of the 5 breeding colonies (coloured stars) along the western and southern coasts of Portugal. Symbols: orange star, yellow-legged gull; pink star,
Cory’s shearwater; blue star, Audouin’s gull. Photo credits M.I. Laranjeiro. (For interpretation of the references to colour in this figure legend, the reader is referred to
the Web version of this article.)
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2.3. Trace elements analysis

Blood cells (hereafter ‘blood’) were freeze-dried and used to measure
total mercury (Hg) and 14 other elements at the laboratory Littoral,
Environment and Societies (LIENSs, CNRS-La Rochelle Université).
Total Hg was quantified with an Altec AMA 254 spectrophotometer (N
= 75, aliquots mass: 0.86 ± 0.69 mg dw). Samples were analysed in
duplicate-triplicate until reaching a relative standard deviation < 10%
(Bustamante et al., 2006). TORT-3 lobster hepatopancreas (Hg certified
concentration: 0.292 ± 0.022 μg g− 1 dw) was used as Certified Refer-
ence Material (CRM) to check the accuracy of the method at each 15
samples. The measured values were 0.287 ± 0.004 μg g− 1 dw (N = 8),
thus corresponding to a recovery rate of 99.1± 1.5%. Blanks were run at
the beginning of each set of samples and the limit of detection (LoD) was
0.1 ng. Aluminium (Al), As, Cd, cobalt (Co), Cr, Cu, Fe, manganese (Mn),
Ni, Pb, Se, tin (Sn), strontium (Sr), and Zn were analysed by Inductively
Coupled Plasma (ICP) Mass Spectrometry (Thermo Fisher Scientific X
Series 2 ICP-MS) and ICP-Optical Emission Spectrometry (Agilent
Technologies 5800 VDV ICP-OES) (aliquot mass: 80–200 mg, N = 75)
following Kojadinovic et al. (2011). Briefly, prior to analysis, blood
samples were microwave digested in a mixture of 3 mL of suprapure
nitric acid (HNO3) and 1 mL of suprapure chloridric acid (HCl), and then
diluted to 25 mL with deionized water. Accuracy and reproducibility of
the preparation was tested through analytical blanks and replicates of
CRMs (TORT-3 Lobster Hepatopancreas and DOLT-5 Dogfish Liver, both
NRC, Canada) along each set of samples. Recovery rates of CRMs ranged
from 84 to 101% more specifically, equal to 96 ± 11% for Al, 95 ± 6%
for As, 92 ± 2% for Cd, 88 ± 4% for Co, 97 ± 5% for Cr, 101 ± 4% for
Cu, 94 ± 4% for Fe, 97 ± 7% for Mn, 92 ± 3% for Ni, 84 ± 3% for Pb,
100 ± 8% for Se, 88 ± 7% for Sn, 90 ± 8% for Sr, and 101 ± 2% for Zn.
Results are given as mean ± SD in μg g− 1 dw.

2.4. Stable isotopes analysis

Freeze-dried blood samples were weighted (between 0.2 and 0.4 mg
dw, N = 71) with a microbalance and packed into tin capsules for
combustion. Relative abundances of δ13C and δ15N were measured using
a continuous flow mass spectrometer (Delta V Plus with a Conflo IV
interface, Thermo Scientific, Bremen, Germany) coupled to an elemental
analyser (Thermo Scientific EA 1112) at the laboratory LIENSs. Results
were expressed using the delta (δ) notation and computed using the
following equation: δX = [(RSample ∕ RStandard) − 1] × 1000, where X
stands for 13C or 15N, and R being the respective ratio, i.e., 13C/12C or
15N/14N. Standard values correspond to Vienna PeeDee Belemnite and
atmospheric N2 for carbon and nitrogen, respectively. Replicate mea-
surements of reference materials (USGS-61 and USGS-63, US Geological
Survey) were used to check the accuracy of the isotopic results, and
analytical precision was <0.10‰ for both δ13C and δ15N values.

2.5. Immuno-haematological parameters analysis

Erythrocyte sedimentation rate (ESR) was measured by collecting
one heparinized capillary tube filled with whole blood and stored
vertically at 4 ◦C for 4 h (Heylen and Matthysen, 2008). ESR is the ratio
of the volume of the capillary tube not occupied by erythrocytes and the
total blood volume in the tube (Heylen and Matthysen, 2008).

Haemoglobin (Hb) concentration (g dL− 1) was measured in whole
blood (20 μL) following Pais de Faria et al. (2022) using the Haemo-
globin Assay commercial kit obtained from SPINREACT according to the
manufacturer’s instructions. Hb analyses were conducted at the Marine
and Environmental Sciences Centre laboratory (MARE, University of
Coimbra).

A small drop of whole blood was smeared on a slide in the field, fixed
in methanol (99% vol) for 3 min within 4 h after collection, left to dry at
room temperature (20 ◦C), and stained with the Giemsa procedure
(Palhares and Grisolia, 2002). The analysis of each blood smear was

carried in a two-step’s procedure: identify monolayer fields with similar
density of well-stained erythrocytes under 400×magnification; proceed
to the identification and counts of leukocytes (i.e., WBC), immature
erythrocytes (IE), and erythrocyte nuclear abnormalities (ENA) under
1000× magnification following Zuñiga-González et al. (2000). WBC
were classified as basophiles, eosinophils, heterophils, lymphocytes, and
monocytes, according to nuclear size, lobules, and colouration intensity
and/or granularity, and overall cell dimension (Fokidis et al., 2008;
Mallory et al., 2015; Norte et al., 2008). WBC was estimated by counting
the number of leukocytes per 10,000 erythrocytes (Thrall et al., 2012),
and the ratio between heterophil/lymphocyte (H/L) was calculated in a
total of 100 WBC (Davis et al., 2008). IE were identified based on their
less oval to round nuclei and polychromatic cytoplasm. ENA were
classified as bilobated/binucleated, budding, kidney-shape, micronu-
cleus, notched, nucleoplasmatic bridge, tailed, vacuolated nucleus, and
unknown nuclear malformation (Pacheco and Santos, 1996; Skarphe-
dinsdottir et al., 2010). The sum of total ENA was calculated for each
blood smear. IE and ENA were estimated per 10,000 erythrocytes. Blood
smears were examined under a Leica DMLS microscope at the laboratory
MARE by a single operator to mitigate bias linked with different oper-
ators. For more details about the aim of each parameter analysed consult
Table S1 in Supplementary Material.

2.6. Data analysis

First, to explore contaminant co-variance and to identify the TEs
reflecting most of the total variance of data, a linear discriminant
analysis (LDA) was computed on normalised and scaled TEs with con-
centrations above the limit of quantification (LOQ) in at least 70% of the
total number of individuals. Concentrations below this threshold were
replaced with a half of the LOQ value (LOQ/2) and included in the
analysis (Hites, 2019). Thus, Cd, Co, Cr, Ni, Sn, and Sr were excluded
from the LDA. Replacements occurred for 15 individuals for Pb (20%)
and one individual for As (1.3%). δ13C and δ15N values were also added
to LDA to help disentangling patterns of TE concentrations among spe-
cies breeding on the different study sites. δ13C was used to explore TEs
relationships with the feeding habitat, as an indicator of the use of
terrestrial or oceanic habitats and pelagic food webs (lower δ13C values)
vs. exploitation of marine or coastal habitats and benthic food webs
(higher δ13C values) (Newsome et al., 2007); while δ15N was used to
identify co-variance of TEs with trophic level (Carravieri et al., 2017).
Since δ13C has a trophic component, a linear regression was carried out
between blood δ13C and δ15N with species/colony as a fixed categorical
variable (F5, 65 = 80.5, p < 0.001, r2 = 0.85; Fig. S1 in Supplementary
Material), and the residuals were then used instead of raw δ13C values
(Ceia et al., 2012). All predictors (Al, As, Cu, Fe, Hg, Mn, Pb, Se, Zn,
δ15N, and residual δ13C) were inspected for multicollinearity issues prior
to LDA, through the calculation of the variation inflation factor (VIF> 2)
and spearman correlation coefficients (rs > 0.50) under the usdm R
package (Naimi, 2017). This inspection resulted in the exclusion of Cu,
Zn, and δ15N from discriminant analysis (Table S2 and Table S3 in
Supplementary Material). The Se:Hg molar ratio was calculated for all
individuals according to Cruz-Flores et al. (2024), although not included
in LDA since it is highly correlated to Hg and Se concentrations. Since
only YLG breeds in all the three study species, the lack of overlapping
breeding sites for AG and CS prevents simultaneous comparisons across
species and colonies. Consequently, we opted to create five categories
based on the species and study site (hereafter ‘colony-site’ factor).
One-way ANOVAs or Kruskal-Wallis were computed to compare the
concentrations of each TE, Se:Hg molar ratios, and stable isotopes
among colony-sites followed by post-hoc Tukey tests or pairwise tests on
significant results (significance level of α < 0.05, Table 1). P-values were
adjusted using the Bonferroni correction to counteract potential Type I
errors.

To facilitate comparisons with published data, we used a conversion
factor of 4.76 by multiplying the wet mass concentrations to obtain the
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dry mass equivalents. This assumption is based on an estimated hu-
midity of approximately 79% in wet tissues such as blood, as indicated
by Eagles-Smith et al. (2008). These results must be interpreted
cautiously, considering that the conversion factor may vary among
species and individuals.

Second, to explore the occurrence of patterns on immuno-
haematological parameters among colony-sites, a second LDA was car-
ried out using those quantified in at least 50% of the individuals. ESR
was not included in the LDA because it was not quantified in YLG
breeding in Deserta. One individual was excluded from this LDA because
none of immuno-haematological parameters was quantified. Isolated
missing values were replaced by the average value computed using the
available values for each colony-site, corresponding to 16% of missing
values for Hb, 10% for IE and ENA counts, and 4% for H/L ratio and
WBC counts. Since the first two axes of the LDA explained more than
95% of total variance of immuno-physiological parameters among
colony-sites (see Fig. S2 and Table S4 in Supplementary Material), this
factor was added as a predictor in subsequent regression-type analyses
(see below).

Third, univariate analyses (linear or generalized linear models, GLM)
were used to test the effect of the colony-site (fixed categorical variable
with five levels), LD scores of axes 1 and 2 extracted from LDA of TE and
stable isotopes (fixed continuous variables), and their interactions on
each immuno-haematological parameter – ESR, Hb, H/L, WBC, IE, and
ENA (response variables) – in a total of six models (Table S5 in Sup-
plementary Material). Full models were adjusted to the family data
distribution (e.g., Gaussian, Gamma (log link function), Poisson (log link
function), Negative binomial) and the shearwater was used as the
reference colony-site, as the representative for coastal and oceanic
habitats. Models were checked for residuals normality, homoscedastic-
ity, and outliers using ‘check_model’ function within the performance R

package (Lüdecke et al., 2021), before going through model selection.
Overdispersion was checked to ensure the appropriateness of the chosen
modelling approach in regression models of variables with Poisson
distribution, i.e., counting data variables (WBC, IE, and ENA). Whenever
overdispersion was observed, the negative binomial family was chosen
and adjusted for skewness with θ shape parameter (Zuur et al., 2009).
Models were run using the ‘dredge’ function within the MuMIn R
package (Barton, 2023), and model selection was carried out following
the Akaike’s Information Criterion corrected for small sample sizes
(AICc) to identify the most parsimonious models (ΔAIC < 2; Burnham
and Anderson, 2002). AICc weights – representing the normalised
weight of evidence in support of a particular model – along with the
explained deviance (reflecting the proportion of variation explained by
the model, Zuur et al., 2009) were employed for deducing the effect of
explanatory variables on the response variables (Burnham and Ander-
son, 2002). When several models outperformed the null model and had
ΔAICc < 2, we employed model averaging for inference. This process
generated averaged parameter estimates (β) for the predictor variables
included in the models, weighted by their respective AICc weights. If the
null model ranked as the optimal model, all explanatory variables were
statistically deemed non-significant. Predicted values and confidence
intervals (CI) were extracted from the most parsimonious model or
average models using the ‘ggpredict’ function within the ggeffects R
package (Lüdecke, 2018) and plotted using ggplot2 R package (Wickham
et al., 2023). Candidate models with both significant and non-significant
effects are presented in Table 2.

Fourth, scaled and centred isotopic data were employed with the
SIBER R package – Stable Isotope Bayesian Ellipses in R – to calculate
Bayesian estimates of standard ellipse areas (SEAB) and draw bivariate
standard ellipses for each colony (Jackson et al., 2011). For visualisation
purposes, standard ellipse areas corrected for small sample sizes (SEAC)

Table 1
Trace elements (TEs) concentrations (μg g− 1 dw) measured in adults’ blood, Se:Hg molar ratio, stable isotope values (δ13C and δ15N,‰) and Bayesian estimation of
standard ellipses (SEAB; 95% confidence intervals, CI), and immuno-haematological parameters calculated for each colony. Values are mean ± SD and quantifiable
sample sizes (N). Differences in TEs concentrations and stable isotopes were evaluated using one-way ANOVA or Kruskal-Wallis followed by post-hoc Tukey or pairwise
tests are indicated by different letters (α < 0.05). Cr and Sn were not tested for differences due to low detection frequency (<10 adults in total).

Cory’s shearwater (CS) Audouin’s gull (AG) Yellow-legged gull (YLG)

Porto Berlenga Deserta

N Mean ± SD N Mean ± SD N Mean ± SD N Mean ± SD N Mean ± SD

Trace elements (μg g− 1 dw)
Al 15 6.60 ± 3.25a 15 7.62 ± 3.34ab 15 10.28 ± 2.79bc 15 11.36 ± 4.11c 15 9.12 ± 2.50abc

As 15 1.32 ± 0.68a 15 6.40 ± 4.84c 14 1.69 ± 2.52ab 15 7.48 ± 2.25c 15 5.27 ± 5.69bc

Cd 14 0.047 ± 0.024b 9 0.013 ± 0.003a 2 0.022 ± 0.008ab 12 0.029 ± 0.016ab 15 All < 0.01
Co 4 0.23 ± 0.15a 3 0.23 ± 0.02a 2 0.01 ± 0.01a 2 0.02 ± 0.01a 7 0.02 ± 0.01a

Cr 5 0.52 ± 0.45 15 All < 0.10 15 All < 0.20 1 0.79 1 0.12
Cu 15 1.69 ± 0.61a 15 2.44 ± 0.37b 15 3.27 ± 0.69c 15 3.24 ± 0.80c 15 3.17 ± 0.53c

Fe 15 2264 ± 76b 15 2328 ± 99b 15 2097 ± 213a 15 2300 ± 117b 15 2048 ± 149a

Hg 15 2.08 ± 0.52b 15 6.58 ± 2.71c 15 1.08 ± 0.75a 15 2.69 ± 1.12b 15 5.63 ± 2.73c

Mn 15 0.15 ± 0.11a 15 0.10 ± 0.04a 15 0.15 ± 0.06a 15 0.11 ± 0.03a 15 0.11 ± 0.03a

Ni 6 0.34 ± 0.25a 2 0.08 ± 0.05a 1 0.09a 3 0.42 ± 0.59a 3 0.20 ± 0.10a

Pb 9 0.03 ± 0.02a 8 0.03 ± 0.02a 15 0.83 ± 0.82b 13 0.04 ± 0.04a 15 0.07 ± 0.06a

Se 15 56.2 ± 17.9d 15 56.8 ± 12.7d 15 6.6 ± 3.9a 15 20.1 ± 9.0b 15 31.3 ± 12.9c

Sn 15 All < 0.03 2 0.10 ± 0.06 15 All < 0.04 15 All < 0.04 15 All < 0.02
Sr 5 0.08 ± 0.03a 7 0.09 ± 0.05a 6 0.11 ± 0.04a 13 0.15 ± 0.10a 12 0.11 ± 0.05a

Zn 15 23.5 ± 4.5a 15 25.2 ± 3.1a 15 25.5 ± 3.0a 15 30.2 ± 8.4a 15 25.0 ± 2.2a

Se:Hg 15 73.6 ± 31.9b 15 27.1 ± 14.9a 15 19.4 ± 11.9a 15 20.2 ± 8.8a 15 18.4 ± 13.1a

Stable isotopes
δ13C (‰) 13 − 19.2 ± 0.4b 15 − 19.4 ± 0.4b 15 − 20.9 ± 1.1a 13 − 19.4 ± 0.5b 15 − 18.8 ± 1.0b

δ15N (‰) 13 12.1 ± 0.5b 15 11.6 ± 0.4b 15 9.3 ± 1.1a 13 13.5 ± 0.5c 15 12.2 ± 1.0b

SEAB [95% CI] 13 0.57 ± 0.17
[0.27–0.90]

15 0.26 ± 0.07
[0.14–0.40]

15 3.20 ± 0.89
[1.71–4.92]

13 1.08 ± 0.33
[0.53–1.68]

15 2.20 ± 0.61
[1.16–3.38]

Immuno-haematological parameters
ESR (Pi) 13 0.30 ± 0.14 15 0.14 ± 0.05 15 0.05 ± 0.03 13 0.08 ± 0.05 –
Hb (g dL− 1) 13 12.16 ± 3.34 12 10.47 ± 1.41 15 11.91 ± 2.11 12 9.96 ± 1.53 7 9.37 ± 3.52
H/L ratio 13 1.27 ± 0.49 14 1.02 ± 0.72 13 1.17 ± 0.47 13 1.76 ± 0.71 15 1.61 ± 0.75
WBC (counts) 13 79 ± 10 14 61 ± 15 13 71 ± 12 13 69 ± 14 15 65 ± 13
IE (counts) 13 215 ± 68 13 133 ± 38 11 166 ± 73 13 170 ± 75 15 154 ± 51
ENA (counts) 13 12.3 ± 6.5 13 0.9 ± 1.1 11 5.7 ± 3.3 12 0.9 ± 0.9 15 1.9 ± 2.2
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Table 2
Summary outputs including model specification, sample size, and Akaike’s Information Criteria (AIC). This table includes all the six response variables tested showing
both significant (in bold) and non-significant effects. Only up to the best ranked models and the null model are shown. The best model outputs are specified when only
one model was selected, while model average (full average) outputs are specified (β ± SE [95% CI]) when two or more models were selected (ΔAICc < 2). Abbre-
viations: LD1 and LD2, scores on axis 1 and 2 of a LDA of TEs (Al, As, Fe, Hg, Mn, Pb, and Se) and residual carbon isotopes (residual δ13C); k, number of parameters;
AICc, Akaike’s information criterion corrected for small sample sizes; ΔAICc, difference between AICc of the specific model and the best model; wi, AICc weights; Exp.
Dev., explained deviance; AG, Audouin’s gull; YLG, yellow-legged gull; BER, Berlenga Island; DES, Deserta Island; POR, Porto.

Immuno-haematological parameter k AICc ΔAICc wi Exp. Dev.

Erythrocyte sedimentation rate (ESR) (N ¼ 53)

GLM Gamma family (‘log’ link)

Colony + LD1 + LD2 6 − 176.3 0 0.55 0.66
Null model 2 − 128.9 47.42 0 0

β ± SE [95% CI] z value p (> |z|)
Intercept − 1.21 ± 0.19 [-1.60 to − 0.78] − 6.45 p < 0.001 ***
ColonyAG − 0.29 ± 0.20 [-0.68 – 0.10] − 1.42 0.16
ColonyYLG BER ¡0.92 ± 0.37 [-1.72– -0.15] 2.50 0.02 *
ColonyYLG POR ¡2.93 ± 0.40 [-3.81 – -2.06] ¡7.33 p < 0.001 ***
LD1 ¡0.18 ± 0.07 [-0.32 – -0.03] ¡2.62 0.02 *
LD2 0.23 ± 0.07 [0.10–0.36] 3.53 p < 0.001 ***

Haemoglobin concentration (Hb) (N ¼ 58)

Linear model (Gaussian family)

Colony 5 648.4 0 0.38 0.21
Colony + LD2 6 648.8 0.41 0.31 0.23
Null model 2 655.8 7.46 0.01 0
Model average (full average) β ± SE [95% CI] z value p (> |z|)
Intercept 122.30 ± 6.29 [109.98–134.61] 19.46 p < 0.001 ***
ColonyAG ¡17.54 ± 8.52 [-34.25 – -0.84] 2.06 0.04 *
ColonyYLG BER ¡28.03 ± 12.83 [-53.18 – -2.88] 2.18 0.03 *
ColonyYLG DES ¡27.55 ± 8.48 [-44.17 – -10.93] 3.25 0.001 **
ColonyYLG POR − 0.36 ± 9.12 [-18.23 – 17.52] 0.04 0.97
LD2 − 1.66 ± 2.60 [-9.08 – 1.66] 0.64 0.52

Heterophil/lymphocyte ratio (H/L) (N ¼ 68)

GLM Gaussian (‘log’ link)

Colonya 5 95.8 0 0.38 0.20
Colony + LD1a 6 97.2 1.87 0.19 0.21
Colony + LD2a 6 97.2 1.38 0.19 0.21
Null model 2 102.3 6.51 0.01 0

White Blood Cells counts (WBC) (N ¼ 68)

GLM negative binomial

Colony 5 572.4 0 0.51 0.20
Null model 2 578.5 6.17 0.02 0

β ± SE [95% CI] z value p (> |z|)
Intercept 4.38 ± 0.05 [4.28–4.47] 89.95 p < 0.001 ***
ColonyAG ¡0.27 ± 0.07 [-0.40 – -0.13] ¡3.93 p < 0.001 ***
ColonyYLG BER ¡0.14 ± 0.07 [-0.28–0.01] ¡2.05 0.04 *
ColonyYLG DES ¡0.20 ± 0.07 [-0.33 – -0.06] 2.90 0.004 **
ColonyYLG POR − 0.12 ± 0.07 [-0.25 – 0.02] − 1.73 0.08

Immature erythrocytes (IE) (N ¼ 61)

GLM negative binomial

Colony + LD1 + LD2 + Colony:LD1 11 704.5 0 0.25 0.41
Colony + LD1 + Colony:LD1 10 705.2 0.40 0.17 0.38
Colony + LD1 + LD2 + Colony:LD1 + Colony:LD2 + LD1:LD2 16 705.6 1.85 0.14 0.54
Null model 2 709.0 4.58 0.02 0
Model average (full average)b β ± SE [95% CI] z value p (> |z|)
Intercept 5.29 ± 0.10 [5.09–5.49] 51.79 p < 0.001 ***
ColonyAG − 0.05 ± 0.34 [-0.67 – 0.61] 0.15 0.88
ColonyYLG BER − 0.23 ± 0.22 [-0.71 – 0.21] 1.01 0.31
ColonyYLG DES ¡0.47 ± 0.13 [-0.73–0.21] 3.56 p < 0.001 ***
ColonyYLG POR − 0.33 ± 0.31 [-0.93 – 0.28] 1.06 0.29
ColonyAG:LD1 − 0.13 ± 0.13 [-0.39 – 0.13] 0.98 0.33
ColonyYLG BER:LD1 − 0.10 ± 0.16 [-0.41 – 0.21] 0.62 0.53
ColonyYLG DES:LD1 0.31 ± 0.09 [0.14–0.48] 3.60 p < 0.001 ***
ColonyYLG POR:LD1 0.01 ± 0.10 [-0.20 – 0.21] 0.07 0.95

Erythrocyte nuclear abnormalities (ENAs) (N ¼ 59)

GLM negative binomial

Colony 5 269.8 0 0.41 0.63
Colony + LD1 6 270.4 0.68 0.29 0.64
Null model 2 323.2 53.47 0 0

(continued on next page)
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were computed using 40% of the data (Fig. S3 in Supplementary Ma-
terial). Data exploration, visualisation, and model computations were
carried out in R version 4.3.1 (R Core Team, 2023).

3. Results

3.1. TE concentrations and stable isotopes

Among the 15 targeted TEs, essential elements including Cu (overall
range: 1.18–4.92 μg g− 1 dw), Fe (1608–2501 μg g− 1 dw), Mn (0.07–0.53
μg g− 1 dw), Se (2.2–89.5 μg g− 1 dw), Zn (18.8–57.0 μg g− 1 dw), and non-
essential TEs like Al (2.40–18.27 μg g− 1 dw) and Hg (0.30–15.47 μg g− 1
dw) were detected in all individuals (Table 1). The highest concentra-
tions of Cu were found in YLG populations and the lowest in CS, while Al
concentrations were higher in YLG breeding in Berlenga rather than in
CS (ANOVA, F4, 70 = 5.29, p = 0.02). Se concentrations were higher in
AG and in CS compared with YLGs, while Hg concentrations were the
highest in AG and YLG breeding in Deserta and the lowest in YLG
breeding in Porto (38.67 < F4, 70 < 40.95, p < 0.001). Se:Hg molar ratio
was the highest in CS (F4, 70 = 15.83, p < 0.001; Table 1) and not
different among the other colonies (p > 0.05). As concentrations
(0.13–18.45 μg g− 1 dw) were detected in all individuals, apart from one
YLG breeding in Porto and were higher in AG and YLG breeding in
Berlenga compared with CS and YLG breeding in Porto (F4, 69 = 8.38, p

< 0.001). The detection frequencies of Cd (0.010–0.099 μg g− 1 dw), Pb
(0.01–2.63 μg g− 1 dw), and Sr (0.04–0.46 μg g− 1 dw) varied widely
among colonies (Table 1). Cd was higher in CS and not detected in YLG
breeding in Deserta, while Pb concentrations were the highest in YLG
breeding in Porto (Kruskal-Wallis, χ2 = 47, df = 4, p < 0.001). Co, Cr,
and Ni were detected in low concentrations in a few individuals, while
Sn was only detected in two AGs (Table 1).

Blood δ13C and δ15N values varied widely among adults from
different colonies (ANOVA, F4, 66 = 18.1 and 59.7, respectively for
carbon and nitrogen, both p < 0.001). Notably, urban-dwelling YLGs
and YLGs breeding in Berlenga occupied distinct isotopic niches
compared to the other colonies, as evident from non-overlapping stan-
dard ellipses (Table 1, Figs. S3–A in Supplementary Material). Urban
YLGs and those breeding in Deserta exhibited the broadest isotopic
niches, while the strictly marine AG and CS exhibited narrower niches
(Figs. S3–B in Supplementary Material).

3.2. TE and isotopic patterns in the ordination space

Among the 7 TEs (Al, As, Fe, Hg, Mn, Pb, and Se) and the residual
δ13C values included in the LDA, Hg and Se contributed most to LD1,
while the residual δ13C values contributed most to LD2 (Table S6 in
Supplementary Material). The LDA highlighted a clear segregation of
urban YLGs along axis 1, strongly associated to the lower blood Hg and
Se concentrations in this population. On the other hand, YLG breeding in
Berlenga was clearly segregated along axis 2, strongly associated to the

Fig. 2. Biplot of adult scores extracted by LDA on the two principal axes (LD1
and LD2) with log-transformed and scaled trace elements (TEs) and stable
isotopes (residual δ13C and δ15N) measured in adults’ blood of gulls and
shearwaters breeding along the western and southern coasts of Portugal. El-
lipses include 70% of data. δ15N, Cu, and Zn were excluded due to multi-
collinearity issues (VIF >2, rs > 0.50) and As was removed from the plot for a
clearer representation. Dashed lines indicate the axes where LD1 and LD2 are
equal to zero. Abbreviations: AG, Audouin’s gull; CS, Cory’s shearwater; YLG:
yellow-legged gull; BER, Berlenga Island; DES, Deserta Island; POR: Porto. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)

Fig. 3. Predicted erythrocyte sedimentation rate (ESR) increased with
increasing LD2 scores (β ± SE: slope 0.23 ± 0.07, intercept − 1.21 ± 0.19, N =

53, ΔAICcNull model = 47.42, see Table 2) expressive of a negative relationship
with δ13C values. Solid lines represent the predicted lines; dashed lines repre-
sent the 95% confidence intervals, CI.

Table 2 (continued )

Immuno-haematological parameter k AICc ΔAICc wi Exp. Dev.

Model average (full average) β ± SE [95% CI] z value p (> |z|)
Intercept 2.29 ± 0.15 [2.00–2.57] 15.73 p < 0.001 ***
ColonyAG ¡1.61 ± 0.24 [-2.08 – -1.13] 6.67 p < 0.001 ***
ColonyYLG BER ¡1.70 ± 0.30 [-2.27 – -1.11] 5.72 p < 0.001 ***
ColonyYLG DES ¡1.20 ± 0.20 [-1.60 – -0.80] 5.85 p < 0.001 ***
ColonyYLG POR − 0.52 ± 0.30 [-1.11 – 0.08] 1.71 0.09
LD1 − 0.03 ± 0.05 [-0.19 – 0.04] 0.60 0.55

a There were no significant predictors in model averaging (full average).
b LD1, LD2, their interaction, and Colony:LD2 were not significant (p > 0.05).
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higher residual δ13C values (Fig. 2). LD scores of the two main axes were
retained for subsequent univariate analyses, and TEs here reported were
used for further inferences (Table S6 in Supplementary Material).

3.3. Association of TEs and trophic ecology with immuno-haematological
parameters

The best model explaining ESR (range: 0.01–0.29) included the
colony-site, LD1, and LD2 as predictors, with no interaction (Table 2).
ESR was higher in CS than in urban YLGs, and those breeding in Ber-
lenga exhibited a moderate negative association with LD1, and a very
strong positive association with LD2 (Fig. 3, Table 2). This suggests an
overall increase of ESR with δ13C values. Model averaging indicated that
there was a positive and strong effect of the interaction between YLG
breeding in Deserta and LD1 on the number of IE (Table 2, Fig. 4). This
suggests an increase in the number of IE in YLGs breeding in Deserta
with the increase on Hg and Se concentrations. Hb concentrations, WBC,
and ENA counts only included the colony-site as significant predictor in
the best model (WBC counts) or average models (Hb and ENA counts)
(Table 2). More specifically, CS presented higher concentrations of Hb,
higher numbers of WBC and ENAs than AG and YLGs breeding in natural
colonies, while urban YLGs presented higher numbers of ENAs than all
other gull populations. Heterophil/lymphocyte ratio (H/L) exhibited no
association with either the colony-site or any of the LD axes (Table 2).

4. Discussion

This study analysed blood concentrations of 15 trace elements (TEs)
in three seabird species breeding along the western and southern coasts
of Portugal. It indicates a diverse exposure to essential and non-essential
TEs, possibly driven by colony-site and species-specific trophic ecology
and foraging habitats, as evidenced by the distinct isotopic niches and
their sizes. Immuno-haematological parameters were strongly influ-
enced by the colony-site, suggesting that species-specific requirements
together with the ecological context of the breeding colony could be the
primary factors explaining these differences. Intriguingly, ESR and IE
counts exhibited moderate and strong relationships with δ13C values and

Hg and Se concentrations, respectively, rather than solely the colony-
site, which might warrant further investigation.

4.1. Comparison to previous studies on blood TE concentrations in
seabirds

Themajority of ecotoxicological studies on TEs have been carried out
using feathers collected from adult seabirds, while only a few studies
have used blood (but see Anderson et al., 2010; Carravieri et al., 2014;
Fromant et al., 2016; Sebastiano et al., 2017, 2016). Different tissues
have diverse turnover rates, preventing direct comparison between
them, thus here we focus on blood studies’ comparisons. In the present
study, Se and Hg were the elements which contributed the most for
separation among colony-sites in the ordination space along the LD1,
evidencing a clear segregation of the urban YLGs from the natural col-
onies. In fact, the range of Se concentrations was very wide among
colonies, being 3- to 10-fold lower in the urban-dwellers than in other
Larids (Correia et al., 2023; Sebastiano et al., 2017). Notably, most
urban YLGs had Se concentrations in the range of seabird chicks reared
in natural habitats (<10 μg g− 1 dw, Carravieri et al., 2020; Kim et al.,
2013; Sebastiano et al., 2017, 2016). This underlines the lower
bioavailability of Se in terrestrial and urban habitats, highly linked to
the lower intake of marine prey by YLGs from Porto (Pais de Faria et al.,
2021b), when compared to species strictly foraging on marine resources
(range 30–200 μg g− 1 dw; Anderson et al., 2010; Carravieri et al., 2014;
Correia et al., 2023; Fromant et al., 2016; Sebastiano et al., 2017).

Overall, CS had generally low Hg concentrations, comparable to
those found in other small and medium-sized Procellariiformes (range
0.3–3.3 μg g− 1 dw; Anderson et al., 2009; Carravieri et al., 2021, 2018;
Carvalho et al., 2013; Fromant et al., 2016). YLGs and AGs breeding in
natural colonies had similar Hg concentrations to those of western gulls
(L. occidentalis) breeding along the west coast of the USA (Clatterbuck
et al., 2021) and to YLGs and lesser black-backed gulls (L. fuscus)
breeding in the Île de Ré on the west coast of France (Jouanneau et al.,
2022), although not exceeding records reported for the great
black-backed gull (L. marinus) breeding in the Île de Ré (range 7.0–21.5
μg g− 1 dw; Jouanneau et al., 2022). Conversely, our urban-dwelling
YLGs had low Hg concentrations, similarly to gulls breeding in the
Baltic Sea (Szumiło-Pilarska et al., 2017). The variation in Hg concen-
trations detected in our study aligns with the prevalent diet at gull
colonies: YLGs and AGs from Deserta feed on demersal and mesopelagic
fish made available via trawler discards, highly abundant in Algarve
(Bueno-Pardo et al., 2017), whereas YLGs from Berlenga and Porto
typically rely on crustaceans and anthropogenic-derived resources,
respectively (Calado et al., 2021; Pais de Faria et al., 2021b). This
highlights the role of diet, trophic position, and foraging habitat in Hg
exposure (Anderson et al., 2009; Jouanneau et al., 2022; Mills et al.,
2022, 2020), evidencing Hg biomagnification (Seco et al., 2021).
Demersal and mesopelagic fishes are known to be of higher trophic
position (δ15 N-enriched; Navarro et al., 2010), and more enriched in Hg
(Blum et al., 2013; Chouvelon et al., 2012; Choy et al., 2009) compared
to crustaceans and anthropogenic-derived resources (Chouvelon et al.,
2012; Thorne et al., 2021). The higher rate of microbial-mediated
methylation of Hg in low oxygen waters, such as the mesopelagic
layer, prompts the formation and accumulation of methyl-Hg (MeHg)
(Choy et al., 2009). This may help explaining the higher Hg concen-
trations found for AGs and YLGs breeding in Deserta when compared to
CS, which rely on cephalopods and epipelagic fish, typically lower in Hg
(Choy et al., 2009; Minet et al., 2021).

δ13C contributed most to the separation of YLGs breeding in Berlenga
from those breeding in the urban colony along LD2. As previously noted
for δ15N, δ13C is generally higher in marine than in terrestrial food webs,
and in demersal than in pelagic food webs (Newsome et al., 2007). The
lower δ13C and δ15N values (rs = 0.623), indicating a diet poorer in
marine resources, together with higher Pb concentrations, distinguished
urban YLGs from other populations in the ordination space. Pb is a

Fig. 4. Predicted immature erythrocyte counts (IE) increased with increasing
LD1 scores within the population of YLG breeding in Deserta (model average, β
± SE: slope 0.31 ± 0.09, intercept 5.29 ± 0.10, N = 71, ΔAICcNull model = 4.58,
see Table 2) expressive of a positive relationship with Hg and Se concentrations.
Solid coloured points represent data from the model for each species breeding
at each colony. Solid line represents the predicted line of the significant
interaction.
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non-essential element associated with higher exposure to urban and
landfill environments (Kim and Williams, 2017; Meillère et al., 2016),
explaining why YLGs showed the highest detection frequencies of Pb
(85–100%). This is likely due to their use of both marine and terres-
trial/anthropogenic resources (Pais de Faria et al., 2021b). Markedly,
13% of the individuals surpassed the lowest benchmarks of Pb reported
to elicit inhibitory effects on delta-aminolaevulinic acid dehydratase
(ALAD) in Baltic eiders (0.24 μg g− 1 dw; Franson et al., 2000; Franson
and Deborah, 2011). This enzyme is essential in the initial steps of heme
synthesis – a precursor of Hb necessary to bind oxygen (Gibson et al.,
1998) – and its inhibition occurs due to the replacement of Zn atoms by
Pb atoms, required for ALAD activity (Astrin et al., 1987). All YLGs
exceeding 0.24 μg g− 1 dw of Pb in blood were urban dwellers, except one
individual from Deserta Island. Thus, these results underscore the
elevated Pb exposure in the urban centres, attributable to YLG’s use of
anthropogenic facilities such as landfills (Fernandes, 2022; Lopes et al.,
2021; Matos et al., 2018), but also suggest a high resilience of YLGs to
contamination.

Other TEs, such as Co, Fe, Mn, Ni, and Zn were within the typical
seabird concentration ranges (Anderson et al., 2010; Carravieri et al.,
2014; Correia et al., 2023; Fromant et al., 2016; Sebastiano et al., 2017),
denoting their role in homeostatic processes (Walsh, 1990). Despite
including cephalopods in their diet, a major source of Cd for predators
(Bustamante et al., 1998), CS had low concentrations of this metal in its
blood, suggesting a low exposure risk (e.g., Carravieri et al., 2014;
Sebastiano et al., 2017, 2016; but see Carvalho et al., 2013; Voulgaris
et al., 2019). Al and Cu concentrations found in YLGs were higher
compared to those from other seabirds (Al: range 0.7–6.9 μg g− 1 dw, Cu:
range 0.5–1.3 μg g− 1 dw; Correia et al., 2023; Finger et al., 2016, 2015;
Fromant et al., 2016; Kim et al., 2013; Sebastiano et al., 2017, 2016).
YLGs are known to feed on considerable amounts of the Henslow’s
swimming crab (Polybius henslowii), especially in Berlenga Island
(Alonso et al., 2015; Calado et al., 2021; Pais de Faria et al., 2021b). In
fact, crustaceans usually contain high Cu and Zn enzymatic re-
quirements (mean Cu: 26.3 μg g− 1 dw, mean Zn: 34.5 μg g− 1 dw; White
and Rainbow, 1985); in crustaceans, haemocyanin is the respiratory
pigment used to transport oxygen (Taylor and Anstiss, 1999), leading to
an increased requirement of Cu (White and Rainbow, 1985). Never-
theless, Cu concentrations were similar across all YLG colony-sites,
suggesting that these elevated levels of Cu may be related to the
foraging ecology of YLG (i.e., species-specific factors) or potentially to a
metabolic disturbance. Usually, Cu concentrations are expected to
remain constant due to homeostatic processes (Walsh, 1990).
Conversely, As concentrations varied widely among and within
colony-sites (range 0.3–18.5 μg g− 1 dw), with higher concentrations in
gulls than shearwaters, consistent with previous reports (Carravieri
et al., 2014; Carvalho et al., 2013; Correia et al., 2023; Fromant et al.,
2016; Sebastiano et al., 2017). Multiple sources of As challenge the
tracking of its origin, especially for wide-ranging foragers like shear-
waters or flexible foragers like gulls. These species rely on diverse
foraging habitats and prey, e.g., marine vs terrestrial and pelagic vs
demersal, which may ‘dilute’ As concentrations in blood, making it
difficult to detect contamination patterns. Despite the uncertainty sur-
rounding As toxicity thresholds, concentrations in our study did not
exceed 50 μg g− 1 dw (Eisler, 1994; Neff, 1997; Sánchez-Virosta et al.,
2015), suggesting minimal threat to these populations. Therefore, when
assessing TE concentrations, we must acknowledge the multiple sources
of each element (natural and anthropogenic), as well as the potential
species-specific requirements for essential elements that may influence
the overall concentrations.

4.2. Hg toxicity and Se:Hg molar ratio

Remarkably, 25% of the individuals, primarily AGs and YLGs from
Deserta, exceeded the internationally defined toxicity threshold for Hg
(1 μg g− 1 ww), which poses a moderate risk to Hg toxicity (range

4.8–14.3 μg g− 1 dw; Ackerman et al., 2016). Such concentrations are
known to impact physiology, behaviour, and reproduction in several
seabird species (Ackerman et al., 2016; Chastel et al., 2022; Goutte et al.,
2015, 2014a, b; Tartu et al., 2015a, b). However, it is worth noting that
all individuals, with the exception of one urban-dwelling YLG (Se:Hg =

3.9), exhibited a Se:Hg molar ratio above 4, a recent threshold outlined
as the Se–Hg relationship needed to effectively demethylate MeHg, the
most toxic organic form of Hg (Manceau et al., 2021). This suggests an
overall effective protection against Hg toxicity (Cuvin-Aralar and Fur-
ness, 1991; Nigro and Leonzio, 1996). In particular, AGs and YLGs had
similar mean Se:Hg molar ratios, despite elevated Se concentrations
found in AGs. If we consider a 1:1 stoichiometry for our study species, it
suggests that AG and YLG populations may have lower protection
against the toxic effects of Hg compared to CS. This contrasts with ex-
pectations based solely on the absence of differences in Hg concentra-
tions observed between CS and YLG from Berlenga. These results
underscore the importance of considering Hg and Se levels at the same
time in predators (Cruz-Flores et al., 2024) and prey to validate our
findings, and assess potential Hg exposure risks for coastal breeding
seabirds.

4.3. Impact of TEs on physiology and health of seabirds

Our study found that immuno-haematological parameters of gulls
and shearwaters were not related to TEs exposure. The parameters used
here did not show any evidence of negative health impacts on the im-
mune response and physiological condition of breeding adults. Despite
widely used in ecology, it should be noted that these parameters are
relatively non-specific, thus it is possible that they simply could not
detect certain impacts due to the lack of specificity to TE contamination.
Yet, it is worth noting the elevated levels of Hg and Pb in some in-
dividuals, which were correlated with demographic consequences in
other species (Ackerman et al., 2016; Chastel et al., 2022; Franson and
Deborah, 2011; Goutte et al., 2014a, b).

Of particular interest was the overall negative relationship between
ESR and δ13C values, as well as the relationship between IE, Hg and Se
concentrations within YLG breeding in Deserta. A higher ESR often in-
dicates systemic inflammation, due to infections, chronic diseases, or
acute inflammatory responses (Heylen and Matthysen, 2008; Norte
et al., 2022). However, it can also reflect physiological stress, including
exposure to pollutants or other stressors (aggressions, competition,
starvation, etc.) (Norte et al., 2022). Our results suggested that higher
δ13C values favoured lower ESR. In gulls, higher δ13C values are often
linked to a marine foraging strategy, while lower δ13C values are usually
linked to a more terrestrial foraging strategy (Garthe et al., 2016;
Mendes et al., 2018; Pais de Faria et al., 2021b). Thus, it would be
predicted that urban YLGs exhibit higher ESR than the other YLG pop-
ulations. This prediction is contradictory to a previous study that
assessed several immuno-haematological parameters in YLG adults and
chicks in the same natural and urban colonies (Pais de Faria et al., 2022).
Here, adults and chicks followed the same pattern: individuals from
urban colonies exhibited lower ESR than individuals from natural col-
onies. In fact, in natural colonies the nest density was much higher than
in urban environments, causing more intraspecific negative interactions.
Higher amounts of IE indicate a necessity for replenishing erythrocytes
due to haemorrhage or haemolysis, typical of regenerative anaemias
caused by ectoparasites (Boyd, 1951; Leighton et al., 1983). Interest-
ingly, our results revealed that within YLG breeding in Deserta, the
number of IE was higher in individuals with higher Hg and Se concen-
trations. This indicates that YLG with a more marine foraging strategy
had higher numbers of IE. A higher amount of IE reveals that the indi-
vidual is replacing the erythrocytes that were depleted due to a hae-
morrhagic event (Minias, 2015). Haemorrhagic events can occur when
competing for food resources while at sea, or during interactions with
fishing vessels that prompt aggressions among individuals (Costa et al.,
2020). Indeed, the amount of Hb synthesised in IE is less than 20% of
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that found in mature erythrocytes, meaning that Hb concentrations are
lower and are expected to be replenished with a substantial delay
(Minias, 2015). Moreover, Hg is known to induce oxidative stress by
generating reactive oxygen species (Henry et al., 2015), which damage
cells including the erythrocytes, thereby further lowering Hb levels.
Despite the significance of these relationships, we recommend caution
when interpreting these results, since the number of studies analysing
these parameters in wild seabirds is still limited, which challenges the
establishment of baseline values, even more with low sample sizes (but
see Pais de Faria et al., 2022).

WBC and ENA counts were notably higher in CS than in the other two
species examined here, suggesting increased immune responses and
greater genotoxicity (i.e., DNA damage), respectively. However, these
values were comparable to those reported for other seabirds
(Colominas-Ciuró et al., 2022; D’Amico et al., 2016; Olmastroni et al.,
2024, 2019). Among gulls, urban-dwelling YLGs exhibited higher ENA
counts than AGs and YLGs breeding in natural colonies. This is in line
with previous reports on the higher prevalence of genotoxicity, e.g.,DNA
adducts, micronucleus and other ENAs, in urban and suburban birds
(Baesse et al., 2019, 2015; Skarphedinsdottir et al., 2010) or in more
polluted areas (Quirós et al., 2008), when compared to more ‘natural’
environments. We should not overlook the potential genotoxic effect of
the high Pb concentrations on urban-dwelling YLGs, despite the low
number of ENAs found in our study (range 0–27), when compared with
previous studies (D’Amico et al., 2016; Olmastroni et al., 2024, 2019). A
higher frequency of ENAs is often indicative of sensitivity to contami-
nants such as essential and non-essential TEs (Christopher et al., 2004;
Shah et al., 2021), however it might not be directly related to overall
exposure. Instead, ENAs have been linked to increased oxidative stress,
infectious diseases, nutritional deficiencies, and physiological stress
(Bourgeon et al., 2012; Keilen et al., 2022).

Other factors such as age, sex, body condition, breeding stage, and
the presence and loads of other stressors, like organic pollutants or
parasites, may influence individual physiological and immunological
responses (Bustnes et al., 2004; Davey et al., 2000; D’Amico et al., 2016;
Wells et al., 2024). This should be particularly critical during the
breeding period when adults are more vulnerable. For instance, Hb
concentrations tend to increase from the egg-laying to the chick-rearing
period due to the high demands of oxygen-carrying capacity while
feeding the chicks (Davey et al., 2000), which may partly explain the
increasing pattern found for Hb between gulls (incubation) and shear-
waters (chick-rearing). On the one hand, we advise caution when
interpreting immuno-haematological parameters alone as indicators of
individual or populational vulnerability to contaminants. We advocate
for a critical look when interpreting these relationships in the context of
environmental contamination. On the other hand, the lack of values
outside the normal ranges and the lack of species-specific toxicity
benchmarks for most of TEs do not preclude potential physiological ef-
fects, as the species may play a pivotal role in such cause-effect
relationships.

5. Conclusion

This study represents a significant contribution in our understanding
of blood TE contamination in coastal and oceanic seabirds. A key finding
was the large variation in TE concentrations among colony-sites,
including some essential elements which may reflect species-specific
requirements. Notably, differences found in Hg, Pb, and Se concentra-
tions among colony-sites underscore the influential role of diet and
trophic ecology in shaping TE accumulation patterns in adult breeding
seabirds. The marked impact of the colony-site effect highlights the
necessity for additional research on the toxicity thresholds of TEs, within
the specific ecological context of each population, i.e., urban vs natural,
coastal marine vs inshore. Our findings raise ecotoxicological concerns,
particularly regarding Pb concentrations in urban-dwelling YLGs and Hg
concentrations in AGs and YLGs which rely on fishery discards (Calado

et al., 2021). Continuous monitoring during both breeding and
non-breeding periods is essential, especially for AGs, which are classified
as Vulnerable according to the IUCN Red List (BirdLife International,
2024). Finally, the limited associations observed between TEs concen-
trations and immuno-haematological parameters emphasises the need
for more comprehensive investigations and larger sample sizes. Such
studies could shed light on physiological and immunological responses
to environmental contamination. This appears to be particularly rele-
vant in light of the expanding presence of gulls in urban environments
(Pais de Faria et al., 2021a), raising questions into the physiological
adaptations of generalist animals inhabiting urbanised areas (García
et al., 2023; Nos et al., 2024).
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Granado, M.D., Espada, E., 2012. Trace metal accumulation in tissues of sole (Solea
senegalensis) and the relationships with the abiotic environment. Inter. J. Environ.
Anal. Chem. 92, 1072–1092. https://doi.org/10.1080/03067319.2010.548092.

Gamble, S.C., Wiseman, A., Goldfarb, P.S., 1997. Selenium-dependent glutathione
peroxidase and other selenoproteins: their synthesis and biochemical roles. J. Chem.
Tech. Biotech. 68, 123–134. https://doi.org/10.1002/(SICI)1097-4660(199702)68:
2<123::AID-JCTB641>3.0.CO;2-O.

García, G.O., Zumpano, F., Mariano y Jelicich, R., Favero, M., 2023. Effect of
urbanization on individual condition of a threatened seabird: the Olrog’s Gull Larus
atlanticus. Urban Ecosys 26, 411–424. https://doi.org/10.1007/s11252-023-01347-
7.

Garthe, S., Schwemmer, P., Paiva, V.H., Corman, A.M., Fock, H.O., Voigt, C.C., Adler, S.,
2016. Terrestrial and marine foraging strategies of an opportunistic seabird species
breeding in the Wadden Sea. PLoS One 11, e0159630. https://doi.org/10.1371/
journal.pone.0159630.

Gibson, S.L., Cupriks, D.J., Havens, J.J., Nguyen, M.L., Hilf, R., 1998. A regulatory role
for porphobilinogen deaminase (PBGD) in δ-aminolaevulinic acid (δ-ALA)-induced
photosensitization? Br. J. Cancer 77, 235–242. https://doi.org/10.1038/
bjc.1998.39.

Goodchild, C.G., VanDiest, I., Lane, S.J., Beck, M., Ewbank, H., Sewall, K.B., 2022.
Variation in hematological indices, oxidative stress, and immune function among
male song sparrows from rural and low-density urban habitats. Front. Ecol. Evol. 10,
817864 https://doi.org/10.3389/fevo.2022.817864.

Goutte, A., Barbraud, C., Herzke, D., Bustamante, P., Angelier, F., Tartu, S., Clement-
Chastel, C., Moe, B., Bech, C., Gabrielsen, G.W., Bustnes, J.O., Chastel, O., 2015.
Survival rate and breeding outputs in a high Arctic seabird exposed to legacy
persistent organic pollutants and mercury. Environ. Pollut. 200, 1–9. https://doi.
org/10.1016/j.envpol.2015.01.033.

Goutte, A., Bustamante, P., Barbraud, C., Delord, K., Weimerskirch, H., Chastel, O.,
2014a. Demographic responses to mercury exposure in two closely related Antarctic
top predators. Ecology 95, 1075–1086. https://doi.org/10.1890/13-1229.1.

Goutte, A., Barbraud, C., Meillère, A., Carravieri, A., Bustamante, P., Labadie, P.,
Budzinski, H., Delord, K., Cherel, Y., Weimerskirch, H., Chastel, O., 2014b.
Demographic consequences of heavy metals and persistent organic pollutants in a
vulnerable long-lived bird, the wandering albatross. Proc. Roy. Soc. B 281,
20133313. https://doi.org/10.1098/rspb.2013.3313.

Henry, K.A., Cristol, D.A., Varian-Ramos, C.W., Bradley, E.L., 2015. Oxidative stress in
songbirds exposed to dietary methylmercury. Ecotoxicology 24, 520–526. https://
doi.org/10.1007/s10646-014-1400-x.
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