
COLLECTION |RESEARCH PAPER
https://doi.org/10.1071/PC23016

Marine mammal strandings recorded in New Caledonia,
South West Pacific Ocean, 1877 to 2022
Claire GarrigueA,B,* , Solène DervilleA,B,C , Claire BonnevilleA,B, Maële BrissetB, Paco BustamanteD ,
Christophe CleguerE , Eric E. G. CluaF,G, Willy DabinH, Sylvie FiatA , Jean-Lou JustineI ,
Pauline Machful J , Tepoerau MaiB,K, Patrice PlichonL, Annie Portal J, Christine SidobreA, Debbie SteelM,
Jean-Christophe VivierN and Elodie VoureyJ

ABSTRACT
For full list of author affiliations and
declarations see end of paper

*Correspondence to:
Claire Garrigue
IRD UMR ENTROPIE (Université de la
Nouvelle-Calédonie, Institut de Recherche
pour le Développement, Université de La
Réunion, IFREMER, Centre National de la
Recherche Scientifique), BP A5, Nouméa
Cedex 98848, New Caledonia
Email: Claire.garrigue@ird.fr

Handling Editor:
Rochelle Constantine

Context. Strandings are an important source of information for estimating marine mammal
biodiversity, particularly in data-sparse ocean basins such asOceania.Aims. Here, we report on knowl-
edge acquired from 218 stranding events recorded in the waters of New Caledonia (1877–2022).
Methods. We investigated spatio-temporal distribution, stable isotope signatures, trace element
concentrations, biometry measurements, genetic diversity, and diet, for the four most commonly
stranded taxa (dugongs, 35% of events; sperm whales, 19%; Delphinidae, 18%; pygmy and dwarf sperm
whales, 14%). Key results. Beginning in 1991, reports of stranding events increased (183 events, 322
individuals, 20 species from seven families: Dugongidae, Physeteridae, Delphinidae, Kogiidae, Ziphiidae,
Balaenopteridae,Otariidae),with hotspots identified on thewest coast (Bourail,Ouano,Nouméa) and in
Prony Bay. Causes of death were not determined in 84% of stranding events, but were identified in the
majority of expert-led necropsies (24 of 29 individuals from 10 species). Yet, valuable information
regarding the impact of anthropogenic activities was gathered for some species of concern, such as
the endangered dugong (28% human-caused). Since 2016, training and outreach have been provided
to rangers, veterinarians, and various public safety officers to support their engagement in the
scientific monitoring of marine mammal strandings. A website (www.rescue.ird.nc) was developed
to facilitate standardised data collection and storage, and to provide public access to stranding
records. Conclusion. Although the number of individuals reported here remains modest, this study
provides new information on poorly documented species in New Caledonia. Implications. Long-
term monitoring of strandings can help design effective conservation measures.
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OPEN ACCESS

Contexte. Les échouages constituent une source d'informations importante pour estimer la
biodiversité des mammifères marins, en particulier dans les bassins océaniques pour lesquels les
données sont rares, comme l'Océanie Objectif. Nous présentons ici les connaissances acquises
à partir de 218 échouages enregistrés dans les eaux de Nouvelle-Calédonie (1877–2022).
Méthodes. Nous avons étudié la distribution spatio-temporelle, les signatures isotopiques, les
éléments traces, les mesures biométriques, la diversité génétique et le régime alimentaire des
quatre taxons les plus fréquemment échoués (dugongs, 35% des échouages; cachalots, 19%;
Delphinidae, 18% ; cachalots pygmées et nains, 14%). Principaux résultats. À partir de 1991,
les signalements d’échouages ont augmenté (183 événements, 322 individus, 20 espèces de sept
familles: Dugongidae, Physeteridae, Delphinidae, Kogiidae, Ziphiidae, Balaenopteridae, Otariidae),
avec des points chauds identifiés sur la côte ouest de la Grande Terre (Bourail, Ouano,
Nouméa) et dans la Baie de Prony. Les causes de décès n’ont pas été déterminées pour 84% des
échouages, mais elles ont été identifiées dans la majorité des autopsies réalisées par des
vétérinaires (24 des 29 individus de 10 espèces). Des informations précieuses concernant
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l'impact des activités anthropiques ont été recueillies pour certaines espèces préoccupantes, telles que le dugong, une espèce en voie de
disparition (28% des échouages d’origine humaine). Depuis 2016, des formations et des activités de sensibilisation ont été dispensées aux
gardes nature, aux vétérinaires et à divers agents publics pour soutenir leur engagement dans la surveillance scientifique des échouages de
mammifères marins. Un site Web (www.rescue.ird.nc) a été développé pour faciliter la collecte et le stockage de données standardisées et
pour fournir un accès public aux enregistrements d'échouages. Conclusion. Bien que le nombre d'individus signalés échoués ici reste
modeste, cette étude apporte de nouvelles informations sur des espèces peu documentées en Nouvelle-Calédonie. Implications. La
surveillance à long terme des échouages peut aider à concevoir des mesures de conservation efficaces.

Keywords: age, diet, marine mammals, mtDNA, stable isotopes, stomach contents, stranding, trace elements.

Introduction

Monitoring marine mammal strandings is widely recognised 
as a valuable source of biological and ecological information 
on species otherwise difficult to observe at sea (Evans and 
Hammond 2004; Dalebout et al. 2005; Beasley et al. 2013). 
Close scientific monitoring of stranded marine mammals can 
provide low cost critical evidence of the threats faced by some 
populations, including disease outbreaks, incidental fisheries 
takes (‘bycatch’), shipstrikes, ingestion and entanglement 
in marine debris, and impacts of anthropogenic sounds 
(Laist et al. 2001; Cox et al. 2006; Meynecke and Meager 
2016; Unger et al. 2016). The samples collected from stranded 
marine mammals can also be used to track pathogens, pollu-
tants such as pesticides and industrial chemicals, particularly 
in the case of top predators, which can concentrate both 
organic and inorganic pollutants (Bustamante et al. 2003). 
Finally, stranding events can contribute to knowledge on 
local marine biodiversity (through species identification) 
and species genetic diversity and population structure. The 
knowledge gained from strandings is particularly important 
in the South Pacific, a vast area of tropical and subtropical 
ocean dotted with thousands of islands. Due to the 
productivity of their fringing coral reefs and the complex 
currents that these small landmasses generate, the waters 
surrounding islands may form an ‘oasis of life’ attracting 
marine mammal predators in these generally nutrient-poor 
seas (Menkes et al. 2015). Coral reefs encircling many 
South Pacific islands form shallow and sheltered lagoons that 
provide suitable habitat for marine mammals year-round (e.g. 
Indo-Pacific bottlenose dolphins, Tursiops aduncus (Bonneville 
et al. 2021)) and may also be used seasonally as breeding 
grounds for otherwise pelagic species (e.g. humpback whales, 
Megaptera novaeangliae (Garrigue et al. 2001)). Surveying 
such a vast area of ocean to study marine mammals, partic-
ularly cryptic, seasonal and/or more pelagic species can be 
time consuming and costly. Therefore, assessing strandings 
throughout the South Pacific’s islands allows us a glimpse of 
the species that inhabit these waters, and of their distribution. 

New Caledonia is the largest archipelago in the South 
Pacific in terms of landmass, and is surrounded by a vast 
Economic Exclusive Zone (EEZ) spanning more than 
1.3 million km2. Marine mammal strandings have been reported 
in this archipelago since as early as 1877, but have only been 

systematically monitored since the early 1990s (with a first 
summary of strandings between 1877 and 2005 provided 
by Borsa 2006). These stranding events have considerably 
contributed to the knowledge of local dugong (Dugong 
dugon) and cetacean populations. For instance, to date eight 
cetacean species, or subspecies, were first recorded in New 
Caledonia from stranding events – a pygmy and a dwarf 
sperm whale in single strandings in 1972 and 1974 (Kogia 
breviceps and K. sima; (Robineau and Rancurel 1981; 
Sylvestre 1988), a pygmy blue whale (Balaenoptera musculus 
brevicauda) single stranding in 2002 (Clua 2002; Garrigue 
et al. 2003; Borsa and Hoarau 2004), single stranding of 
common dolphin (Delphinus delphis) around 1877, sei whale 
(Balaenoptera borealis) in 1962, Antarctic minke whale 
(Balaenoptera bonaerensis) in 1993, melon-headed whale 
(Peponocephala electra) in 2003 and New Zealand fur seal 
(Arctocephalus forsteri) in 1972 (all in Borsa (2006)). In 
addition, two cetacean species were first reported in New 
Caledonia from mass-stranding events: pygmy killer whales 
(Feresa attenuata, (Clua et al. 2014)) and Longman’s beaked 
whales (Indopacetus pacificus, (Garrigue et al. 2016)). These 
events have led to improved knowledge of these species in 
New Caledonia and the South Pacific at large. 

In this study, we present a detailed summary of all marine 
mammal stranding events reported in New Caledonia since 
1877. In addition to describing species identification, the 
general trends in spatio-temporal distribution, and causes of 
death, we present insights gained from analysing mitochondrial 
DNA (mtDNA), stomach contents, age, stable isotope values, and 
trace element concentrations from stranded individuals. 

Methods

Study area

The main island of New Caledonia, Grande Terre (a fragment of 
ancient Gondwana), is 400 km long by 50 km wide, and is 
surrounded by an immense barrier reef 1600 km in length, 
which forms large lagoons with waters up to 70 m deep and 
numerous small islets (Fig. 1). Three islands are included in 
these lagoons: Isle of Pine in the south and the Belep Islands 
(Art and Pott) in the north. Outside of the barrier reef, the 
waters drop quickly from a few hundred to more than 3000 m. 
The Loyalty Islands (Ouvea, Tiga, Lifou, and Maré) lie 
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Fig. 1. Kernel density estimates of all recorded marine mammal strandings in New Caledonia between 1991 and 2022. Density values
below 10% are not shown. Orange colours indicate higher densities and blue colours indicate lower densities. Land and shallow reefs are
shown in grey. Note that stranding records are likely to be subject to a spatial bias as 76% of the 238 000 inhabitants of New Caledonia are
found in Nouméa and its surroundings.

approximately 100 km to the east of Grande Terre, whereas the 
uninhabited Chesterfield–Bellona coral reef complex is located 
approximately 600 km to the west of Grande Terre. The study 
area extends over the entire New Caledonian archipelago with 
the exception of the Chesterfield–Bellona coral reef complex 
(not shown in maps) where no strandings were reported (Fig. 1). 

Data collection

Strandings are defined as dead or live animals that were either 
found washed ashore, floating nearshore, or by-caught in 
fishing gear. In most cases, rescue was attempted when animals 
stranded alive. For this study, the term mass stranding refers to 

two or more animals stranded together, with the exception of 
mother–calf pairs that are considered as isolated stranding 
events. The number of stranding events and stranded individuals 
reported in this paper were summarised by family and species. 
The first necropsy was conducted by a veterinarian in 1994 
and continues to be conducted on a portion of stranded 
animals until the present day. 

Information on stranding events before 1991 was sourced 
mainly from local newspapers, discussion with local people 
and published papers (Rancurel 1973; Robineau and Rancurel 
1981; Sylvestre 1988; Borsa 2006, 2022). Since 1991, the 
marine mammal specialist, local nongovernmental organisa-
tion Operation Cétacés has attempted to collect information 
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on all stranding events occurring in New Caledonian waters. 
Since 2016, the lead author has recommended standardised 
protocols for the collection of data and biological samples 
and initiated the training of persons authorised to intervene 
in stranding events, such as rangers from the environmental 
services of the three provinces of New Caledonia and 
veterinarians. Due to remote locations, some information 
such as exact date, geographical location or biological data, 
was obtained weeks or months later resulting in variable 
levels of uncertainty in some stranding records. 

When examination of the carcass was possible, data were 
collected following guidelines set up by the French national 
stranding network, depending on the degree of decay 
(https://www.observatoire-pelagis.cnrs.fr/echouages/reseau-
national-echouage/). Given that complete data collection was 
not always possible, we recommended at least noting the date, 
the precise location of the stranding (with geographical 
coordinates if possible), the state of decomposition of the 
carcass, the presence of scars that may indicate human interac-
tion, the total length of the animal in order to estimate its age-
class (Jefferson et al. 2008; Lanyon et al. 2021), photographs, 
and collection of a skin sample. When possible, teeth, stomach 
contents, parasites, and tissues (e.g. skin, muscle, liver, kidney) 
were collected and complete morphological measurements 
were made. If a veterinarian was available, a necropsy could 
be performed. 

Spatial and temporal analysis

All marine mammal stranding locations available were 
mapped and analysed using R statistical software (R Core  Team  
2023). The total number of strandings was analysed annually 
and monthly. Among the species identified with good confidence 
based on visual  field identification and/or genetic identification 
(certain and probable), we also made separate analyses for the 
most commonly stranded taxa: dugongs, short-finned pilot 
whales (Globicephala macrorhynchus), dwarf and/or pygmy 
sperm whales, and sperm whales (Physeter macrocephalus). 
Spatial distribution was assessed with kernel density estimates 
applied to stranding events that occurred between 1991 and 
2022 using the R package MASS (Ver. 7.3). Based on the 
dimensions of the archipelago and the lagoon width, 
kernels were applied with a bandwidth of 20 km and at a 
resolution of 2 km. Kernel estimates and observations were 
represented over maps of land and coral reefs provided by 
Andréfouët et al. (2008). The number of individuals per 
stranding was used as weights. Temporal distribution across 
years was investigated with generalised linear models (GLM) 
in which the number of stranding events was modelled with a 
Poisson distribution as a function of year. Temporal distribu-
tion of stranding events throughout the year was investigated 
with χ2 tests applied to the number of events per austral 
season: spring (October–December), summer (January–March), 
fall (April–June), and winter (July–September). 

Biological analysis

Genetic identification of taxa and population
structure

Genetic analyses were used to (1) confirm species identity 
(and sex) especially if the carcass was very decomposed, or if 
it was a rare species, and, (2) for a subset of species, determine 
the population of origin. For the first objective, mtDNA 
control region sequences (see Supplementary Material S1 
for details on lab procedure) were checked against Genbank 
(https://www.ncbi.nlm.nih.gov/genbank/) using a nucleotide 
Basic Local Alignment Search Tool (BLAST) search. For the 
second objective, mtDNA control region sequences generated 
as part of this study were aligned to previously published 
sequences downloaded from GenBank (Table S1). GenBank 
sequences were chosen to be part of a reference dataset if 
they contained no uncertainties and if the sampling location 
was known in sequence details or in the related publication. 
The geographic coverage and number of sequences contained 
in these reference datasets varied depending on the species 
of interest. Details of each dataset used are available in 
Table S2. For sperm whales, three sequences originated 
from biopsy samples taken on live animals were also included 
in the analyses. All sequences are available on GenBank: 
https://www.ncbi.nlm.nih.gov/genbank/ (Genbank accession 
#OQ736578-OQ736596). 

Given that haplotype frequencies were unknown for 
many of the sequences that comprise the reference 
datasets, only one sequence per haplotype per region was 
used for this study. Consequently, only likely popula-
tion origin was explored and no population differentiation 
analyses were conducted. For each species, a median-
joining haplotype network of relationships among the 
worldwide mtDNA haplotypes was created using Network 
V10 (Fluxus Technology). 

Ageing
For cetacean and dugong teeth, Growth Layer Groups 

(GLGs) were counted, assuming that one GLG equals 1 year 
(Gurevich et al. 1980; Perrin and Myrick 1980; Klevezal 1996; 
Lockyer and Garrigue 2021), see Supplementary Material 1 
for details on the procedure). For cetaceans, at least two 
different readers made three independent readings of three 
tooth sections for each individual, thus resulting in over 18 
independent age determinations per individual. All readings 
were recorded to the nearest whole year and age was 
expressed as mean ± s.d. for each individual. Inter-reader 
variation in age determination was assessed by using a paired 
t-test, whereas precision in age reading was compared across 
the age series by applying a χ2 test comparing errors in age 
determination among animals of 0–9, 10–15 and 16–23 years. 
For dugong, the upper posterior incisors, called more 
commonly the ‘tusks’, were used for ageing as they are 
their only permanent teeth. The tusks predominantly erupt in 
males, occasionally in females, and hence result in only 
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a minimum age in quite old animals (Mitchell 1978; 
Marsh 1980, 2009). The GLGs were counted using the 
naked eye and a magnifying glass. Two people examined 
each section independently three times. 

Diet
Prey items were sorted into categories (fish, cephalopods, 

crustaceans and gelatinous plankton), identified to the lowest 
possible taxonomic level based on literature, and classified 
according to degree of digestion (fresh, slightly digested, 
advanced digestion, hard parts) and developmental stage 
(larvae, juvenile, adult, see Supplementary Material 1 for 
details on lab procedure). The data were analysed to highlight 
proportions of prey items without hard parts (cephalopod’s 
beaks) by number (%N, percentage representing the total 
prey items from a particular taxon identified), proportions 
by weight (%W, percentage representing the total weight 
of remains from a particular taxon), and frequencies of 
occurrence (%FO, percentage of stomachs containing a 
particular taxon). The vertical distributions of the taxa 
identified in the stomachs were characterised according to the 
literature and from data obtained during research collabora-
tions between the Fisheries Aquaculture and Marine 
Ecosystem Laboratory (FAME) of the Pacific Community 
(SPC, Noumea) and the French National Research Institute 
for Sustainable Development (IRD), conducted in the EEZ of 
New Caledonia (Allain and Menkes 2011, 2021; Garrigue 
and Derville 2019; Olu and Allain 2020). 

Stable isotope and heavy metals
Samples used for trace element, radionuclide and stable 

isotope analyses were freeze-dried and ground with a porcelain 
mortar and pestle (Garrigue et al. 2000; Bustamante et al. 2001, 
2003). Powdered dried tissues were stored in polyethylene 
vials prior to analysis (see Supplementary Material 1 for 
details on lab procedure). 

Trace element analysis. Fourteen trace elements were 
analysed: silver (Ag), arsenic (As), cadmium (Cd), cobalt 
(Co), chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), 
manganese (Mn), nickel (Ni), lead (Pb), selenium (Se), 
vanadium (V) and zinc (Zn) as described elsewhere 
(Kojadinovic et al. 2011). Trace element concentrations are 
expressed in μg.g−1 of dry weight (dw). 

Stable isotopes. Stable isotope analyses were conducted to 
obtain information on the feeding habitats of the animals 
(δ13C), and their trophic position in the food webs (δ15N). 
As the turnover time of these elements varies by tissue type, 
from several days (e.g. liver) to several months (e.g. muscle), 
stable isotopes were analysed between the available tissues to 
cover a wide temporal range. Results are expressed in parts 
per thousand (‰) in the usual δ notation, relative to Vienna 

Pee Dee Belemnite for δ13C and atmospheric N2 for δ15N, 
following the formula: 

δ13C or  δ15N = ððR sample=R standardÞ − 1Þ × 103 

where R is 13C/12C or  15N/14N, respectively. The measurement 
error was <0.15 ‰ for both δ13C and  δ15N values.  

Results and discussion

General trends

A total of 218 marine mammal stranding events, accounting 
for a minimum of 409 individuals, were reported around 
New Caledonia between 1877 and 2022 (Table S3, Fig. S1). 
As a result of both field-based, photographic, and genetic 
identification, species were identified with certainty in 82% 
of the cases (n = 179), and probable in 13% (n = 28) of the 
cases. The species could not be identified in 5% (n = 11) of 
the stranding events, and thus were considered as ‘unknown’. 
Of the 30 species known to have used New Caledonian waters, 
22 were documented in stranding events (one sirenian, one 
pinniped, and 20 cetaceans, including five baleen whales 
and 15 toothed whales (Garrigue 2007; Garrigue and Poupon 
2013)). Of these 22, six have never been documented alive in 
the waters of New Caledonia and are only known to use the 
region from these stranding events (pygmy blue whale, 
pygmy killer whale, striped dolphin (Stenella coeruleoalba), 
common dolphin, melon-headed whale, rough-toothed 
dolphin (Steno bredanensis). Most of the stranding events 
(84%, n = 183 events involving a minimum of 322 individ-
uals of 20 species) occurred during the period 1991–2022. 
Between 1996 and 2020, 29 individuals (from 10 species) 
were necropsied with the support of a veterinarian (Table S4). 

The majority of events between 1877 and 2022 (n = 192 or 
88%) were considered single strandings, including three 
mother–calf pairs. Twenty six events (12%) were 
considered mass strandings with a minimum of two and a 
maximum of 50 individuals. Short-finned pilot whales were 
the most common species to mass strand, comprising 42% 
(n = 11) of all events, and 31% (n = 122) of the identified 
individuals, with the remaining 58% of events involving 
eight different species (striped dolphin, spinner dolphin 
(Stenella longirostris), false killer whale (Pseudorca crassidens), 
pygmy killer whale, Longman’s beakedwhale, pygmy  and  dwarf  
sperm whales, sperm whale). The most common taxa to strand 
were dugongs, comprising 31% (n = 65) of the documented 
stranding events for the whole study period with the majority 
of those 35% (n = 60) between 1991 and 2022, followed by 
sperm whales (22%, n = 45; 1991–2022: 19%, n = 33), 
Delphinidae (18%, n = 37; 1991–2022: 18%, n = 31) and 
Kogiidae (14%, n = 28; 1991–2022: 14%, n = 25). 
Delphinidae had the highest number of individuals stranded, 
(52%, n = 208, 1991–2022: 50%, n = 152) due to the mass 
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strandings of pilot whales, which account for 59% (n = 122; 
1991–2022: 47%, n = 72) of the stranded Delphinidae 
individuals. 

followed by laboratory analysis, pathogens such as morbillivirus 
and poxvirus were identified as putative killing agents for 
Longman’s beaked whale, striped and Indo-Pacific bottlenose 
dolphins (Table S4). 

State of carcasses (1991–2022)

No information on the state of carcasses was available for 32 
of the 322 individuals that stranded between 1991 and 2022. 
In 35 events, all or some of the animals (n = 130, 40%) 
stranded alive. Of these, 92 individuals were refloated. The 
species that stranded alive were dugong, pygmy and dwarf 
sperm whales, false killer whale, pygmy killer whale, short-
finned pilot whale, New Zealand fur seal, spinner dolphin, 
Longman’s beaked whale, and Antarctic minke whale. For 
the remaining 185 carcasses, 40% were freshly dead, 43% 
more or less decomposed, and 17% were highly decomposed, 
with only fragments remaining (Table S3). 

Causes of stranding (1991–2022)

The cause of stranding was unknown for most of the 
individuals (n = 271, 84%) because (1) no trained observers 
could access the carcass, (2) the carcass was too deteriorated 
to be examined, or the individual was refloated (34%, n = 92). 
When identified (n = 51), the cause of death for 55% of 
individuals was from natural causes (e.g. predation, disease, 
starvation, meteorological events such as following 
hurricanes, see Clua et al. 2014), and was of anthropogenic 
origin for 45% of the individuals (e.g. intentionally killed 
20% (n = 10), boat collision 18% (n = 9), entanglement in 
fishing gear 8% (n = 4)). In rare cases, marine debris, such 
as plastics, were found in stomachs but did not necessarily 
cause death (see Table S4). In three cases of necropsies 

Among the deaths of anthropogenic origin, all but one of 
the intentional takes were observed in dugongs (see below, 
dugong focus taxa). The one other case was an Indo-Pacific 
bottlenose dolphin showing various wounds caused by 
weapons, recorded in 1994. Moreover, within the stranding 
records six dugongs (Tables S3 and S4) and one sperm 
whale showed clear evidence of propeller injuries or trauma 
linked to boat collisions. In addition, alleged collisions 
between a humpback whale and high-speed vessels were 
reported in the local newspaper in February 1998 and 
August 2004 but no biological evidence could be collected. 
Finally, a photographic analysis of Indo-Pacific bottlenose 
dolphin dorsal fin injuries revealed that many individuals 
in the south lagoon have been subject to propeller hits 
(Bonneville et al. 2021). Both lagoon and pelagic species 
were entangled in fishing gear with two dugongs entangled 
in fishing nets, one sperm whale entangled in a fixed fish-
aggregating device used by professional coastal fishermen 
or recreational fishermen, and one young unweaned short-
finned pilot whale caught in a long line fishing rope. 

Temporal and spatial distribution

Reported stranding events increased in New Caledonia over 
the entire modern period from 1962 onwards (Fig. 2; GLM 
year effect: z = 9.88, P < 0.001, deviance explained = 0.60) 
and during the more recent study period 1991–2022 
(z = 3.85, P < 0.001, deviance explained = 0.35). Events 
per year ranged from two in 1991 to a maximum of 15 in 

Fig. 2. Temporal distribution of stranding events in New Caledonia between 1877 and 2022. Historical period represented on the
histogram ranges up to 1961 (dotted line). The recent study period with consistent stranding monitoring starts in 1991 (dashed line).
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2020 (mean ± s.d. 6 ± 3 events/year). Stranding occurred 
year-round, with no significant effect of season detected in 
events since 1877 (χ2 test: χ2 = 5.4, P = 0.139) nor since 
1991 (χ2 test: χ2 = 4.2, P = 0.251). 

The increase in annual number of stranding events since 
1962 is largely due to an increase in detection as a conse-
quence of greater survey effort and public awareness. 
Stranding records from the end of the 19th and during most 
of the 20th century were retrieved from opportunistic 
sightings and newspapers and it is highly probable that 
most events were undetected or unreported. Such sampling 
bias could also have contributed to the observed stranding 
increase since 1991, although over this period monitoring 
was much more consistent and a real increase in strandings 
may have occurred. 

Stranding events were reported all around the mainland as 
well as all four of the Loyalty Islands, Isle of Pines, and Belep 
islands, along the coastlines as well as on the reefs 
surrounding the archipelago. The majority of strandings 
were located on the west coast of the mainland (Fig. 1), 
consistent with aerial survey observations of a greater 
presence of marine mammals on the west coast compared 
to the east coast of the mainland (Garrigue et al. 2008; Van 
Canneyt et al. 2016; Cleguer et al. 2017; Laran et al. 2023). 
Stranding hotspots were identified around Bourail, Ouano, 
Nouméa, and Prony Bay. However, as with the temporal 
trends described above, the spatial distribution of stranding 
records is also likely affected by sampling bias and we do 
not know how far carcasses floating in the lagoon can drift 
from the moment of death to stranding of the body on the 
shore (Peltier et al. 2012). Three quarters of the New 
Caledonian human population is concentrated in or near 
Noumea (182 000 inhabitants in 2019, equivalent to 76% 
of the total New Caledonian archipelago population, 
INSEE data https://www.insee.fr/fr/statistiques/2122859), 
which may explain why more strandings were reported 
in this area. In comparison, all other counties or towns 
represented in Fig. 1 have similarly small population sizes 
(e.g. Bourail ~5500 people in 2019, Koumac ~ 4000 people, 
Thio ~2500 people). Despite not having high permanent 
human population densities, other stranding hotspots such 
as Ouano, Bourail, and Prony Bay are relatively popular 
tourist destinations and are known to host greater numbers 
of some marine mammal species (humpback whales in 
Prony Bay (Derville et al. 2019), dugongs in Bourail and 
Ouano (Cleguer et al. 2015)). Prony Bay also appears to be 
a hotspot of stranding diversity of both coastal and pelagic 
marine mammal species (five different species recorded 
stranded), which may be due to the bay being largely open 
to the ocean. 

Stable isotopes and trace elements

There was wide variation of stable isotope values, with a clear 
segregation between dugong (ranging from −6.3 to −9.8 ‰ 

for δ13C and from 2.4 to 5.5 ‰ for δ15N) and toothed 
whales (ranging from −15.6 to −18.8 ‰ for δ13C and from 
11.0 to 15.0 ‰ for δ15N) independent of the tissues analysed 
(Table 1). Stable isotopes were strongly correlated between 
liver and muscle (r2 = 0.961 for δ13C and r2 = 0.935 for 
δ15N) and between liver and kidney (r2 = 0.950 in both cases). 

Trace element concentrations also varied across both tissue 
type and species (Table 1). Specifically, muscle showed 
concentration values below 1 μg g−1 dry weight (dw) for 
Ag, As, Cd, Co, Cr, Mn, Ni, Pb and V, with a few exceptions 
(e.g. Cr and Ni in dwarf sperm whale). In contrast, Hg 
concentrations were high in the muscle of toothed whales 
(e.g. up to 153 μg g−1 dw in pygmy killer whales) but two 
to three times lower in dugong (between 0.68 and 
8.84 μg g−1 dw). Similarly, trace elements in blubber were 
very low with the exception of Hg in toothed whales. 

Liver and kidney showed high concentrations of several trace 
elements. Of these, the liver showed the highest concentrations 
of  Ag, Cu,  Fe, Hg,  Se,  and  Zn  and the  kidney  the highest  
for Cd. However, hepatic Hg concentrations were relatively 
low in dugongs (0.05–2.65 μg g−1 dw), had intermediate 
values in pygmy and dwarf sperm whales (1.15–50.5 μg g−1 dw) 
and had extremely high concentrations in Longman’s beaked 
whales (131–800 μg g−1 dw), pilot whales (1035–2290 μg g−1 

dw) and pygmy killer whales (147–3959 μg g−1 dw). Se 
followed a similar pattern as Hg, with the lowest concentra-
tions in the liver in dugongs and the highest in pygmy 
killer whales stranded in New Caledonia. Both Hg and Se 
were strongly correlated in the liver of toothed whales, 
indicating their coaccumulation in this tissue. A molar ratio 
between hepatic Hg and Se close to 1 was found in all 
specimens with the exception of the young individuals 
(calves and juveniles) for odontocetes and all dugongs 
whatever their age. It is remarkable that for pygmy killer 
whales, this molar ratio was also close to 1 in the kidneys and 
muscles. In dugongs specifically, very high concentrations 
of Co, Fe and Zn were found in the liver. The liver of 
marine mammals stranded in New Caledonia also contained 
high Cd concentrations but they remained below kidney 
levels. 

Stable isotopes of carbon and nitrogen are widely used to 
infer the trophic ecology (δ13C for the feeding habitats and 
δ15N for the trophic position, (Hobson 1999)). In the marine 
mammals from New Caledonia, δ13C values in the different 
tissues reflect the segregation between inshore and offshore 
species. In each group, little difference between tissues 
indicates that the species exploit a relatively homogeneous 
habitat and that they do not make major changes in their 
habitat on both short (liver) and long (muscles) terms (Fig. S2). 
Values of δ15N clearly differentiate the herbivorous species 
(i.e. dugongs) from the toothed whales which, based on the 
trophic tracers, appear to have a relatively similar trophic 
niche. Nevertheless, when considering trace elements to 
infer the trophic ecology of toothed whales, the very high 
Cd concentrations in the liver and kidneys of short-finned 
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Table 1. Stable isotope values (‰) and trace element concentrations (μg g−1 dw) in the tissues of marine mammals stranded in New Caledonia.

Taxa Code of individual Tissue δ13C δ15N Ag As Cd Co Cr Cu Fe Hg Mn Ni Pb Se V Zn

F. attenuata EC2006-02-02 Liver −16.3 13.9 7.10 <dl 11.9 0.08 <dl 15 902 1288 13 <dl 0.29 466 <dl 83

F. attenuata EC2006-04-01 Liver −17.1 13.4 10.2 <dl 22.5 0.06 <dl 26 1045 1075 9.7 <dl 0.27 412 <dl 98

F. attenuata EC2006-04-02 Liver −17.0 14.5 6.28 <dl 28.7 0.05 <dl 32 1135 1645 12 <dl 0.47 551 <dl 93

F. attenuata EC2006-04-03 Liver −16.4 12.8 2.72 <dl 6.42 0.05 <dl 18 575 147 9.4 <dl 0.18 59.5 <dl 90

F. attenuata EC2006-07-01 Liver −17.6 14.8 12.1 <dl 19.8 0.09 <dl 24 1592 3959 8.8 <dl 0.19 1314 <dl 115

Mean −16.9 13.9 7.68 17.9 0.07 23 1050 1623 11 0.28 561 96

s.d. 0.5 0.8 3.63 8.8 0.02 7 370 1418 2 0.12 461 12

G. macrorhynchus EC1997-01-01A Liver −18.8 13.1 ND ND 225 <dl <dl 37 1472 1411 7.1 <dl ND 627 0.06 136

G. macrorhynchus EC1997-01-02A Liver −18.3 14.4 ND ND 464 0.04 <dl 51 1535 1452 6.8 <dl ND 758 0.10 113

G. macrorhynchus EC2009-07-01 Liver −17.2 12.1 3.59 2.8 226 0.08 0.68 30 1340 334 6.9 0.13 0.10 192 <dl 185

G. macrorhynchus EC2009-07-02 Liver −17.2 12.0 3.96 3.2 363 0.07 0.22 29 1035 587 8.7 0.08 0.19 422 <dl 142

G. macrorhynchus EC2009-07-03 Liver −16.8 11.7 3.26 1.9 198 0.06 0.24 23 2290 188 5.2 <dl 0.22 188 <dl 114

Mean −17.6 12.7 3.60 2.6 295 0.07 0.38 34 1535 794 6.9 0.11 0.17 437 0.08 138

s.d. 0.8 1.1 0.35 0.7 114 0.02 0.26 11 464 599 1.3 0.04 0.07 255 0.03 29

I. pacificus EC2013-06-01B Liver −17.0 13.1 1.57 18 97 0.34 0.13 10 1525 131 5.3 <dl <dl 57.7 <dl 161

I. pacificus EC2013-06-02B Liver −16.7 13.8 2.25 24 142 0.37 0.20 13 1422 180 6.0 <dl <dl 103 <dl 168

I. pacificus EC2013-06-03B Liver −16.9 12.6 2.51 23 169 0.24 0.15 10 924 800 8.3 <dl <dl 278 <dl 181

Mean −16.9 13.1 2.11 22 136 0.32 0.16 11 1290 370 6.5 146 170

s.d. 0.1 0.6 0.49 3.3 36 0.07 0.04 2 321 373 1.6 117 10

K. breviceps EC1997-04-01A Liver −15.9 14.4 ND ND 28.8 <dl <dl 8 2503 7.86 5.2 <dl ND 20.7 0.10 52

K. breviceps EC1997-03-01A Liver −17.3 14.5 ND ND 47.5 0.05 <dl 18 3120 77.3 5.0 <dl ND 25.2 0.68 54

K. breviceps EC2007-05-01 Liver −16.8 12.5 0.46 <dl 0.04 0.15 1.53 25 1649 1.15 2.7 <dl <dl 14.7 <dl 40

K. breviceps EC2007-04-01 Liver −17.4 13.0 1.31 <dl 17.1 0.27 <dl 13 1140 50.5 4.8 <dl <dl 30.7 <dl 79

K. breviceps EC2007-03-01 Liver −17.0 13.5 1.12 <dl 14.7 0.11 <dl 9 2389 33.8 2.5 <dl <dl 25.0 <dl 51

K. breviceps EC2006-09-01 Liver −17.0 12.8 0.58 <dl 12.0 0.25 1.80 6 2434 27.7 2.2 1.78 <dl 29.9 <dl 43

K. breviceps EC2010-04-01 Liver −17.1 12.6 0.33 <dl 7.6 0.18 0.38 5 2138 20.7 2.8 1.26 <dl 25.8 0.36 44

Mean −16.9 13.3 0.76 18.2 0.17 1.24 12 2196 31.3 3.6 1.52 24.6 0.38 52

s.d. 0.5 0.9 0.43 15.6 0.08 0.75 7 640 26.1 1.3 0.37 5.5 0.29 13

K. sima EC2011-01-01 Liver −17.3 11.5 0.47 1.4 21.1 0.13 1.06 8 2556 25.3 6.6 0.66 0.02 23.2 <dl 86

D. dugon EC2006-01-01 Liver −7.3 5.4 0.46 <dl 0.69 45.9 <dl 7 338 2.65 4.8 0.49 <dl 17.1 <dl 774

D. dugon EC2006-13-01 Liver −7.3 5.5 0.43 16 2.34 36.7 1.45 9 1171 1.27 1.5 <dl <dl 16.7 <dl 2389

D. dugon EC2009-01-01 Liver −9.8 2.8 0.29 7.2 1.06 38.1 1.29 8 8958 0.16 1.9 0.71 0.09 1.63 <dl 2880

D. dugon EC2011-05-01 Liver −6.4 2.9 1.81 0.3 <dl 4.63 0.45 239 1548 0.05 2.9 0.79 0.03 2.28 <dl 666

Mean −7.7 4.1 0.75 7.7 1.36 31.3 1.06 66 3004 1.03 2.8 0.66 0.06 9.42 1677

s.d. 1.5 1.5 0.71 7.7 0.86 18.2 0.53 115 4002 1.21 1.5 0.16 0.04 8.63 1124

F. attenuata EC2006-02-02 Kidney −16.1 13.2 0.58 <dl 25.3 0.05 <dl 14 624 179 3.1 <dl 0.10 83.0 <dl 69

F. attenuata EC2006-04-01 Kidney −16.1 13.5 0.94 <dl 27.7 0.06 <dl 11 472 249 1.8 <dl 0.10 96.1 <dl 69

F. attenuata EC2006-04-02 Kidney −16.2 14.6 0.94 <dl 68.4 0.05 <dl 12 1031 293 2.9 <dl 0.17 124 <dl 77

F. attenuata EC2006-04-03 Kidney −16.1 14.8 0.45 <dl 30.6 0.07 <dl 16 385 128 2.9 <dl 0.53 69.1 <dl 97

F. attenuata EC2006-07-01 Kidney −16.7 15.0 1.94 <dl 46.2 0.45 <dl 18 1718 650 4.7 <dl 0.12 247 <dl 108

Mean −16.2 14.2 0.97 39.7 0.14 14 846 300 3.1 0.20 124 84

s.d. 0.3 0.8 0.58 18.0 0.17 3 547 206 1.0 0.19 72 17

G. macrorhynchus EC2009-07-01 Kidney −16.3 13.1 0.40 3.1 343 0.16 0.56 15 612 90 3.4 0.12 0.03 63.0 <dl 142

(Continued on next page)
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Table 1. (Continued).

Taxa Code of individual Tissue δ13C δ15N Ag As Cd Co Cr Cu Fe Hg Mn Ni Pb Se V Zn

G. macrorhynchus EC2009-07-02 Kidney −16.2 13.0 0.29 2.7 332 0.07 0.68 9 458 61 2.9 0.20 0.03 45.1 <dl 104

G. macrorhynchus EC2009-07-03 Kidney −16.2 12.8 0.16 2.9 278 0.08 2.07 10 476 32 2.8 0.15 0.02 30.3 <dl 102

Mean −16.2 13.0 0.28 2.9 318 0.10 1.10 11 515 61 3.0 0.16 0.03 46.2 116

s.d. 0.1 0.2 0.12 0.2 35 0.05 0.84 3 84 29 0.3 0.04 0.01 16.4 22

I. pacificus EC2013-06-01B Kidney −17.4 13.3 <dl 2.3 216 0.27 1.34 8 941 128 1.8 1.59 <dl 15.3 <dl 102

I. pacificus EC2013-06-02B Kidney −16.4 13.7 1.89 3.0 223 <dl 0.20 7 637 12.0 1.1 <dl <dl 10.0 <dl 81

I. pacificus EC2013-06-03B Kidney −17.2 12.7 6.92 19 146 0.23 0.13 11 764 620 8.3 0.43 <dl 346 <dl 169

Mean −17.0 13.2 4.41 8.2 195 0.25 0.56 9 781 253 3.7 1.01 124 117

s.d. 0.6 0.5 3.56 9.6 42.9 0.03 0.68 2 153 323 4.0 0.82 193 46

K. breviceps EC2007-05-01 Kidney ND ND <dl <dl 0.04 0.08 1.67 8 1149 0.73 2.0 <dl <dl 17.6 <dl 63

K. breviceps EC2007-04-01 Kidney ND ND <dl <dl 136 0.11 <dl 7 511 14.7 2.3 <dl <dl 24.5 <dl 75

K. breviceps EC2007-03-01 Kidney ND ND 0.26 <dl 47.2 0.13 <dl 6 906 62.2 1.4 <dl <dl 43.0 <dl 54

K. breviceps EC2006-09-01 Kidney −17.0 13.6 0.11 <dl 56.4 0.11 <dl 6 815 37.9 1.6 <dl <dl 55.8 <dl 84

K. breviceps EC2010-04-01 Kidney −16.9 13.0 0.08 <dl 97.4 0.11 0.52 7 1036 17.4 2.2 <dl 0.04 43.6 <dl 73

Mean −16.9 13.3 0.15 67.4 0.11 7 884 26.6 1.9 0.04 36.9 70

s.d. 0.0 0.4 0.09 51.6 0.02 1 244 23.9 0.4 15.5 12

K. sima EC2011-01-01 Kidney −16.9 11.8 0.10 2.9 30.8 0.18 2.21 10 573 36.1 3.2 0.65 0.04 54.3 <dl 92

D. dugon EC2009-01-01 Kidney −8.9 3.15 0.61 1.1 0.56 3.08 1.31 5 347 0.05 1.3 0.68 0.05 3.28 0.4 63

F. attenuata EC2006-02-02 Muscle −16.1 13.5 <dl <dl 0.07 <dl <dl 2 575 53.3 <dl <dl 0.14 <dl <dl 42

F. attenuata EC2006-04-01 Muscle −15.9 12.0 <dl <dl 0.04 <dl <dl 2 621 56.8 <dl <dl 0.69 16.5 <dl 29

F. attenuata EC2006-04-02 Muscle −16.0 12.6 <dl <dl 0.06 <dl <dl 2 575 89.3 <dl <dl 0.20 26.2 <dl 44

F. attenuata EC2006-04-03 Muscle −16.0 12.7 <dl <dl 0.03 <dl <dl 3 531 13.9 <dl <dl 0.23 <dl <dl 43

F. attenuata EC2006-07-01 Muscle −16.5 13.2 <dl <dl 0.14 <dl <dl 3 636 153 <dl <dl <dl 52.8 <dl 48

Mean −16.1 12.8 0.07 2 587 73.3 0.32 31.9 41

s.d. 0.3 0.6 0.04 0 42 52 0.25 18.8 7

G. macrorhynchus EC1997-01-01A Muscle −16.4 12.5 ND ND 0.79 <dl <dl 1 347 32.8 <dl <dl ND 8.56 <dl 61

G. macrorhynchus EC1997-01-02A Muscle −16.5 13.4 ND ND 1.48 <dl <dl 2 622 27.3 <dl <dl ND 5.62 <dl 50

G. macrorhynchus EC2009-07-01 Muscle −15.7 11.2 <dl 2.6 0.85 <dl 0.74 2 653 9.93 0.3 0.16 <dl 3.40 <0.38 61

G. macrorhynchus EC2009-07-02 Muscle −15.6 11.1 <dl 3.2 2.62 <dl 1.01 2 804 14.0 0.4 <dl <dl 4.79 <0.35 55

G. macrorhynchus EC2009-07-03 Muscle −16.0 11.0 <dl 3.8 0.56 <dl 0.47 2 664 9.94 0.3 0.21 <dl 3.56 <0.4 51

Mean −16.0 11.8 3.2 1.26 0.74 2 618 18.8 0.4 0.18 5.19 56

s.d. 0.4 1.1 0.6 0.83 0.27 1 167 10.6 0.0 0.03 2.10 5

I. pacificus EC2013-06-01B Muscle −16.4 12.5 <dl 2.5 0.22 <dl 0.20 2 761 10.5 0.3 <dl <dl 2.10 <dl 33

I. pacificus EC2013-06-02B Muscle −16.0 13.3 <dl 2.6 0.30 <dl 0.20 2 764 13.9 0.3 <dl <dl 3.20 <dl 30

I. pacificus EC2013-06-03B Muscle −16.3 12.8 <dl 3.8 0.84 <dl 0.34 2 919 57.3 0.5 <dl <dl 22.9 <dl 41

Mean −16.2 12.8 2.9 0.45 0.25 2 815 27.2 0.4 9.4 35

s.d. 0.2 0.4 0.7 0.34 0.08 0 90 26.1 0.1 11.7 6

K. breviceps EC1997-04-01A Muscle −15.7 13.2 ND ND 0.41 <dl 0.03 2 977 6.07 0.3 <dl ND 6.41 <dl 43

K. breviceps EC1997-03-01A Muscle −16.6 13.4 ND ND 0.57 <dl <dl 1 820 5.16 0.1 <dl ND 2.49 <dl 67

K. breviceps EC2007-05-01 Muscle −16.6 14.6 <dl <dl 0.04 0.03 1.26 4 304 0.68 <dl <dl <dl <dl <dl 58

K. breviceps EC2007-04-01 Muscle −16.5 12.4 <dl <dl 0.13 0.04 <dl 2 691 4.91 <dl <dl <dl <dl <dl 39

K. breviceps EC2007-03-01 Muscle −16.2 12.7 <dl <dl 0.12 0.36 1.11 2 873 6.51 2.7 <dl <dl <dl <dl 45

(Continued on next page)
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Table 1. (Continued).

Taxa

K. breviceps

K. breviceps

Code of individual

EC2006-09-01

EC2010-04-01

Tissue

Muscle

Muscle

Mean

δ13C
−17.0

−16.2

−16.4

δ15N Ag

12.8 <dl

12.5 <dl

13.1

As

<dl

<dl

Cd

0.21

0.21

0.24

Co

0.03

0.05

0.10

Cr

<dl

2.07

1.12

Cu

2

3

2

Fe

746

883

756

Hg

7.73

8.84

5.70

Mn

<dl

1.5

1.2

Ni

<dl

<dl

Pb

<dl

<dl

Se

<dl

4.44

4.45

V

<dl

<dl

Zn

51

51

51

K. sima EC2011-01-01

s.d.

Muscle

0.4

−16.3

0.8

11.5 <dl 1.1

0.19

<dl

0.14

0.12

0.84

2.23

1

2

221

880

2.61

6.10

1.2

1.0 1.62 0.04

1.96

3.52 <dl

10

34

D. dugon

D. dugon

D. dugon

EC2006-01-01

EC2006-13-01

EC2009-01-01

Muscle

Muscle

Muscle

Mean

−7.3

−7.4

−8.2

−7.6

4.7

3.8

2.4

3.6

<dl

<dl

<dl

<dl

<dl

<dl

0.03

0.03

<dl

0.03

0.12

0.12

0.08

0.11

<dl

<dl

<dl

1

1

1

1

400

191

86

226

0.27

0.70

0.03

0.33

<dl

<dl

<dl

<dl

<dl

<dl

0.03

0.10

0.04

0.05

<dl

<dl

<dl

<dl

<dl

<dl

96

94

75

88

G. macrorhynchus

G. macrorhynchus

EC1997-01-01A

EC1997-01-02A

s.d.

Blubber

Blubber

0.5

ND

ND

1.2

ND

ND

ND

ND

ND

ND

0.00

0.95

0.84

0.02

<dl

<dl

2.51

0.32

0

0.4

0.2

159

187

18

0.34

10.97

3.20

0.2

<dl

<dl

<dl

0.04

ND

ND

4.44

3.02

<dl

<dl

11

21

17

D. dugon EC2009-01-01 Blubber −5.2 3.4 <dl <dl <dl 0.23 0.54 0.3 12 0.01 <dl 0.21 0.06 0.12 <dl 9

Wet:dry wt ratios are 4.5, 4.2, 4.0 and 1.6 for liver, kidneys, muscle and blubber, respectively.
dl, detection limit; ND, not determined.
ABustamante et al. (2003), Garrigue et al. (2000).
BGarrigue et al. (2016).

pilot whales and Longman’s beaked whales suggest that they 
preferentially consume cephalopods (Bustamante et al. 1998). 
In a previous study, a large proportion of cephalopods 
(60% of the prey) was found in the stomachs of short-
finned pilot whales stranded in New Caledonia (Bustamante 
et al. 2003). The very high concentrations of Hg in the tissues 
of toothed whales, particularly in the liver, suggest that they 
consume a large proportion of fish. It is remarkable that one 
individual pygmy killer whale had a hepatic Hg concentration 
close to 4000 μg g−1 dw. In toothed whales stranded in New 
Caledonia, the very high concentrations of Se in the liver, 
which correlate with that of Hg, reveals the existence of the 
demethylation of methyl-Hg (MeHg) by Se, which leads to 
a coaccumulation of the two elements in the form of mer-
curic selenide (HgSe) granules or tiemannite (Cuvin-Aralar and 
Furness 1991; Nigro and Leonzio 1996). Tiemannite granules 
have been reported in the liver of seabirds, marine mammals 
and humans (Martoja and Berry 1980; Pelletier 1986; 
Nigro and Leonzio 1996) but more recently in the kidneys, 
muscles and brains of giant petrels (Macronectes spp.) 
from the Southern Ocean (Manceau et al. 2021a) and the 
muscles of the blue marlin (Makaira sp., Manceau et al. 
2021b). These results suggest that pygmy killer whale 
demethylates MeHg in the kidneys and muscles as well and 
raise the question of this detoxification process in their 
brains. Future studies on this species should be undertaken 
to answer this question. 

Although the number of individuals presently studied 
remains modest, this study provides new information on 
poorly documented species (Longman’s beaked whale, pygmy 

killer whale, dwarf and pygmy sperm whales, dugong). Two 
studies already discussed trace elements in Longman’s beaked 
whales, short-finned pilot whales and pygmy sperm whales 
(Bustamante et al. 2003; Garrigue et al. 2016). Trace element 
concentrations in dugong tissues were generally similar to 
those previously reported in Australian dugongs (e.g. Denton 
et al. 1980; Denton and Breck 1981; Kemper et al. 1994). 
Strikingly, maximum concentrations of Co, Fe and Zn in the 
liver of dugongs are much higher than in the other species. 
The very high concentrations of Fe are related to its binding 
to ferritin, ferrihydrite and goethite iron oxide, resulting in 
reduced Fe toxicity (Rahman et al. 1999). As Co shares 
several similarities with Fe in its atomic properties (Stadler 
and Schweyen 2002; Rodrigue et al. 2005), it is possible 
that Co can be detoxified in the same way as Fe. Further 
research should be conducted to clarify this hypothesis. 
Considering the potential factors of variation of trace elements, 
the concentrations of Ag, Cd, Hg, and Se were higher in the 
older individuals compared with younger ones. Such a pattern 
is typical of marine mammals as a result of their bioaccumula-
tion with age. 

Focus on five taxa

Dugong
In New Caledonia, the dugong is mainly found within the 

lagoons around the main island (Garrigue et al. 2008; Cleguer 
et al. 2015; Derville et al. 2022), therefore, sick or dying 
dugongs are more likely to be found in coastal areas. 
Dugong strandings occurred year-round with no significant 
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Fig. 3. Dugong stranding data recorded since 1991. (a) Number of individuals stranded per year. (b) Number of individuals stranded per
month. Stranding events are indicated with horizontal white lines to distinguish isolated and mass strandings based on number of individuals.
(c) Geographical locations of events (with number of individuals represented as point size). (d) Causes of death including five individuals
stranded alive with cause unknown and refloated.

seasonal effect (χ2 test χ2 = 2.5, P = 0.500), however, the 
number of stranding events have significantly increased since 
1991 (z = 3.85, P < 0.001, deviance explained 0.33; Fig. 3a). 
Stranding events have mainly been observed on the west coast, 
where human and dugong densities are the highest, with two 
hotspots located around Nouméa and Ouano (Fig. 3c). 

Seven individuals were stranded alive and five successfully 
released, 48 stranded individuals varied from freshly dead 
(21% of them) to remains (19%), and no information was 
available on the state of the eight remaining carcasses. 

Total length was obtained for 21 individuals, and 
ranged from 116 cm to 310 cm (Table S5). Following 

Sixty stranding events of solitary animals, including one 
stranding of a mother with a calf, were recorded (Table S3). 

Lanyon et al. (2021), the mean total body length ± s.d. was 
calculated for calves (137.0 ± 30.6, n = 4, min = 116, 
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max = 182), and adults (270.7 ± 19.1, n = 15). Adult females 
(279.5 cm ± 17.3, n = 6, min = 260, max = 301) were 
not significantly larger than adult males (264.9 cm ± 18.9, 
n = 9, min = 250, max = 310) on average (Welch t-test: 
t = 1.6, d.f. = 11.6, P = 0.134). The estimated age of eight 
individuals of which we could retrieve tusks for ageing 
ranged from 8 to 37 years. 

Stomach content analysis of the species of plant material 
visually identified in the stomach of five dugongs confirmed 
a diet mainly composed of the seagrass species, Halophila 
ovalis, Halodule cf. uninervis, Syringodium isoetifolium, 
Cymodocea serrulata and Cymodocea sp., a diet previously 
identified by Marsh et al. (1982). Interestingly, each individual 
dugong stomach contained a different dominant seagrass 
species. Small fragments of seaweeds from Sargassum spp. 
and of Caulerpa spp. as well as some shells of Modiolus, 
fragments of sponges, and ascidians were also found in a 
3.00 m-long female’s stomach (Brisset et al. 2022). Stable 
isotope analysis currently underway will allow further knowledge 
of the diet of dugongs in the area (Thibault et al. unpubl. data). 

The cause of mortality was identified for almost half of the 
dugongs reported stranded between 1991 and 2022 (n = 26 of 
61). Cause of death was determined to be of anthropogenic 
origin for 28% (n = 17) of cases (including illegal capture 
(poaching), boat collision, and incidental bycatch in fishing 
gear), of natural origin for 11% (n = 9) of cases (including 
diseases, meteorological events or predation) and could not be 
determined for the remaining 57% (n = 35, including five 
refloated animals) of cases (Fig. 3d). Seven cases of poaching 
were also found further inland but not included in analyses. 

The dugong population of New Caledonia shows an 
extremely low mtDNA diversity, and a high genetic differentia-
tion with other populations (Garrigue et al. 2022). This 
precarious genetic status was one of the key determinants 
that led the International Union for Conservation of Nature 
(IUCN) to revise the status of the New Caledonia dugong 
population, now listed as endangered (Hamel et al. 2022). 
The large number of deaths identified in this study from 
poaching or other anthropogenic causes is concerning. This 
strong anthropogenic pressure may weaken the population 
and endanger its survival, reinforcing the need for an urgent 
response from management and conservation institutions to 
protect this species in New Caledonia. 

Sperm whale
Sperm whales were the second most commonly stranded 

species in the archipelago (45 stranding events and 48 individ-
uals Table S3), and the most common species to strand in 
the Loyalty Islands. Sperm whales stranded all around the 
archipelago, with some areas of higher concentrations: 
between Bourail and Nepoui on the west coast, around 
Touho on the east coast, and in the south lagoon including 
the Isle of Pines (Fig. 4c). In contrast to dugongs, there was 
no temporal trend observed in the number of stranding 
events of sperm whales since 1991 (Fig. 4a; z = 0.25, 

P = 0.799). Stranding events were documented year-round 
(Fig. 4b), consistent with reported year-round presence of 
the species in New Caledonian waters (Poupon and 
Garrigue 2011). There was no significant effect of season 
on the number of sperm whale strandings (χ2 test: 
χ2 = 3.00, P = 0.406) despite apparent peaks of events in May 
and November. Two stranding events involved newborn 
calves (total length <4 m  Jefferson et al. 2008). Both of 
these events occurred toward the end of the austral summer 
(March–April) which, given a reported gestation period of 
14–16 months in this species (Jefferson et al. 2008; 
Whitehead 2018), indicates mating occurred in the spring. 
Observations of large groups at sea during the spring 
(October–December pers. obs.) indicates that sperm whales 
may be both mating and calving in New Caledonian waters. 

When carcasses were available for examination, they were 
partly decomposed and/or showed signs of having been 
scavenged at sea suggesting that the animals died at sea and 
were subsequently washed up on the reef. The head ‘case’ of 
sperm whales is composed of gristle, which is very tough and 
slow to decompose after death. Given the state of carcasses, 
few measurements or samples other than skin could be 
collected, and the species identification have subsequently 
been confirmed from DNA. 

A 578-bp fragment of the mtDNA control region was 
successfully sequenced for eight samples collected from 
eight stranding events plus three biopsies samples taken 
from live animals in New Caledonia. Four haplotypes (Pma-
NC01, Pma-NC02, Pma-NC03 and Pma-NC04), differing by 
seven base pairs, were identified (Fig. 5). Clustal W alignment 
sequences from the 11 samples and 222 others available were 
produced from a 301-bp consensus fragment of the mtDNA 
control region, containing 30 variable sites and leading to 37 
different haplotypes that were already known from Alexander 
et al. (2016). The four New Caledonian haplotypes already 
known from previous studies correspond to haplotypes A, 
C, Z, O respectively (Alexander et al. 2016). The mtDNA 
control region haplotype diversity within New Caledonia 
sperm whales is Hd = 0.600, slightly lower than diversity 
estimates reported for other regions in the Pacific Ocean 
(ranging from 0.643 in Hawaii to 0.788 in the Gulf of 
California (Alexander et al. 2016)). Sperm whales are a 
long-lived species with few geographical barriers, however 
their worldwide mtDNA diversity is relatively low compared 
to other cetacean species with similar life-history traits 
(Lyrholm et al. 1996; Whitehead et al. 1998; Alexander 
et al. 2013, 2016). Although overall mtDNA diversity is low 
in this species, there exists a high genetic structure among 
geographic regions or social groups that is attributed to 
female philopatry (Lyrholm et al. 1999). In the Pacific 
Ocean, the importance of social group philopatry is strong 
and appears to be the main driver in genetic differentiation 
between regions (Alexander et al. 2016). Although genetic 
differentiation and fine-scale genetic structure was not tested 
here, the New Caledonian haplotypes found in strandings are 
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Fig. 4. Stranding data recorded for sperm whales since 1877. Number of individuals stranded (a) per year and (b) per month. Stranding
events are indicated with horizontal white lines to distinguish isolated and mass strandings based on number of individuals. (c) Geographical
locations of events (with number of individuals represented as point size). Illustration credit: NOAA Fisheries.

consistent with those previously reported in the Pacific 
Ocean, indicating that is likely the basin of origin of these 
sperm whales. 

since 1991, show no temporal trend (Fig. 6a; z = 1.09, 
P = 0.276) nor any seasonal effect (χ2 test: χ2 = 1.67, 
P = 0.671). The majority of stranding events were of a single 
animal (n = 20), three were mother–calf pairs, and two were 
mass strandings involving three individuals. Nine individuals 
stranded alive in six events, and only one was successfully 
refloated. Kogia strandings were concentrated in the south and 
south-western part of the main island (67% of records since 
1991), with a hotspot around Prony Bay (Fig. 6b, Table S3). 

Dwarf sperm whale and pygmy sperm whale
Species of the genus Kogia were the third most common 

animals to strand. The first record of a Kogia stranding is 
from 1972 and since 1991, 25 stranding events comprising 
30 individuals have been reported. The stranding records, 
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Fig. 5. Median-joining network based on a 302 bp alignment from 11 mtDNA control region sequences from sperm whales stranded in
New Caledonia and 56 sperm whales worldwide reference haplotypes. Size of circle represents relative frequencies for New Caledonian
spermwhales; colours represent putative populations of origin. The lengths of black lines represent the number of base changes. Except for
individuals sampled in New Caledonia, only one sequence per haplotype per region has been represented here.

Species identification (either from morphology or DNA 
analyses) was possible for 20 of the total 25 stranding events, 
five events of dwarf sperm whales (eight individuals of 
which five females, two males) and 15 events of pygmy 
sperm whales (17 individuals of which five females and 
five males). 

Eight dwarf sperm whales and 14 pygmy sperm whales 
were in good enough condition for measurements and samples 
to be collected. For dwarf sperm whales, stranded adults 
ranged from 217 to 237 cm in length (Table S5) with a 
mean ± s.d. of 228.8 ± 7.9 cm (n = 5 individuals). The 
ratio between height of dorsal fin and total length ranged 
between 7.5 and 8.9%. Tooth age was estimated for five 
individuals, the youngest was 4.1, and the oldest was 
15.7 years. Adult pygmy sperm whales ranged from 250 to 
320 cm in length (Table S5) with a mean total length ± s.d. 
of 295.2 ± 26.4 cm (n = 10 individuals). The ratio between 
height of dorsal fin and total length ranged from 3.6 to 

5.3%. Tooth age was estimated for six individuals and 
varied from 6.0 to 19.0 years. 

A 504-bp fragment of the mtDNA control region was 
successfully sequenced for five samples of dwarf sperm 
whale collected from three stranding events. Four haplotypes 
(KsiNC01 to KsiNC04) differing at 15 bp were identified 
leading to a high haplotype diversity of Hd = 0.900. One of 
the events (EC2005-04) was a mass stranding of three 
individuals (two adult females and one male calf). Necropsy 
results of one of these adult females showed the presence of 
small ovaries (<10 cm) and a large womb as well as milk in 
the mammary glands, indicating a recent parturition. This 
female shared the same mtDNA haplotype (KsiNC01) with 
the stranded male calf suggesting this calf was her recent 
offspring. 

A total of 39 sequences previously published in Chivers 
et al. (2005) and Viricel (2012) were downloaded from 
GenBank and used as a reference dataset. After aligning the 
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Fig. 6. Stranding data recorded for dwarf and pygmy sperm whales since 1991. (a) Number of individuals stranded per year. Stranding
events are indicated with horizontal white lines to distinguish isolated and mass strandings based on number of individuals. (b) Geographical
locations of events (with number of individuals represented as point size).

five sequences from this study, all sequences were trimmed to 
a 354 bp consensus length. This length describes 38 different 
haplotypes, separated into two distinct clades (Atlantic Ocean 
and Indo-Pacific Ocean), as previously reported in Chivers 
et al. (2005) and shown in the median-joining network 
(Fig. 7). The four haplotypes sequenced as part of this study all 
belong in the Indo-Pacific clade. One haplotype, KsiNC04, 
from a single stranded individual was identical to a previously 
published haplotype from the Indo-Pacific region (exact 

sample location unknown). The remaining three haplotypes 
(KsiNC01, KsiNC02 and KsiNC03) described in this study 
are new and separated from the rest of the Indo-Pacific 
clade by four base pairs. This is perhaps not surprising 
when one considers that of the 13 haplotypes represented 
in the Indo-Pacific clade reference dataset only one was from 
the Pacific Ocean (Chivers et al. 2005). Although dwarf sperm 
whales are widely distributed, they are elusive species that are 
difficult to approach at sea. For this reason, there are few 

15

www.publish.csiro.au/pc


C. Garrigue et al. Pacific Conservation Biology 30 (2024) PC23016

New Caledonia 

1 base change 
1 individual 

Atlantic Ocean 

Indo-Pacific Ocean 

KsiNC03 KsiNC02 KsiNC01 

KsiNC04 

Fig. 7. Median-joining network based on a 354 bp alignment of five mtDNA control region sequences from dwarf spermwhales stranded
in New Caledonia and 35 dwarf sperm whales worldwide reference haplotypes. Size of circle represents relative frequencies for New
Caledonian dwarf sperm whales; colours represent putative populations of origin. The lengths of black lines represent the number of
base changes. Except for individuals sampled in New Caledonia, only one sequence per haplotype per region has been represented here.

opportunities to collect samples from living animals (Baird 
et al. 2022). The three new haplotypes described from 
stranded animals in this study are an important addition to 
knowledge of dwarf sperm whale genetic diversity in the 
Pacific Ocean. 

A 453-bp fragment of the mtDNA control region was 
successfully sequenced for two samples collected from pygmy 
sperm whales. These two sequences resolved two haplotypes 
that differed by 11 bp, KbrNC01 and KbrNC02. Neither of 
these haplotypes matched previously identified haplotypes 
from the Indo-Pacific Ocean (n = 29) or the Atlantic Ocean 
(n = 67) (Chivers et al. 2005; Viricel 2012). In contrast to 
dwarf sperm whales, there is no evidence of global geographic 
structure in pygmy sperm whales (Chivers et al. 2005). 
A haplotype network constructed from the New Caledonia 
sequences and the reference dataset confirmed this lack of 
geographic structure and showed both haplotypes from New 
Caledonia nested in a global haplotypic network (network 
not shown). 

No clear evidence for the cause of death was discovered but 
some individuals were clearly heavily infected by parasites. 
Anisakis physeteris and Anisakis paggiae (both Nematoda, 
Anisakidae), Phyllobothrium delphini and Monorygma 
grimaldii (both Cestoda, Phyllobothriidae) were respectively 
found in stomachs, blubber and muscles of pygmy sperm 
whale (Supplementary Material 2). Stomach nematodes 
have been commonly reported in stranded specimens of Kogia 

and several authors have suggested that individuals with 
parasites could suffer by expending energy feeding parasites 
rather than themselves. However, there is no quantitative 
study on stomach parasites that can report a threshold 
of infection leading to strandings (Mcalpine et al. 1997; 
Bustamante et al. 2003; Plön 2004). 

Ten stomach contents were analysed. Two of them have 
been previously reported (Bustamante et al. 2003); two 
others (dwarf sperm whale EC2011-01-01 and pygmy 
sperm whale EC2019-07-01) were empty or contained an 
unrecorded quantity of parasites; results for the remaining 
six stomach contents are reported here (pygmy sperm whale 
n = 3 and dwarf sperm whale n = 3). Of the six stomach 
contents analysed, three were in a very advanced state of 
digestion (dwarf sperm whale EC2005-04-02 and EC2005-
04-03 and pygmy sperm whale EC2007-03-01) and identifica-
tions were limited to less precise taxonomic level (e.g. 
Decapodiformes, Crustacea, Actinopterygii). There were a 
total of 599 prey items analysed from the six stomachs, 
from which 17 taxa were identified (Table S6). Information 
about the total number and the total weight of prey by 
stomach are summarised in Table 2. Proportions of prey 
items by number (%N), by weight (%W) and frequencies of 
occurrence (%FO) for these six stomachs are presented 
in Table S6. Cephalopods were present in 100% of the 
stomachs analysed but the majority of them were completely 
digested and only represented by beak remains that have 
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Table 2. Summary table of specimens whose stomach contents were analysed with number and weight of prey items and taxa in the stomachs of
dwarf sperm whale (N = 3) and pygmy sperm whale (N = 3) (U = present but uncountable), ND = not determined.

Taxa Code of individual Total number Total weight Total number Stomach content Type of analysis
of items of items (g) of taxa examiner

K. breviceps EC1997-04-01A ND ND ND IRD, MNHN Whole content, morphological analysis,

EC1997-03-01A ND ND ND cephalopod beak identification

EC2007-03-01 79 34.03 3 SPC Whole content, morphological analysis

EC2007-04-01 303 462.99 9

EC2010-04-01 63 101 3

EC2019-07-01 Empty IRD In situ analysis

K. sima EC2004-01-01 109 183.49 9 SPC Whole content, morphological analysis

EC2005-04-02 23 7.6 2

EC2005-04-03 22 2.6 4

EC2011-01-01 Empty IRD In situ analysis

Total 599 791.71 17

IRD, French National Institute for Sustainable Development; MNHN, National Museum of Natural History (Paris, France); SPC, Pacific Community, Noumea, New
Caledonia.
ABustamante et al. (2003), Garrigue et al. (2000).

not been identified but preserved in 80% ethanol for further 
identification (1 Octopodiforme, 0.02 g, and 575 
Decapodiformes; 130.57 g). As cephalopod’ beaks could 
remain in the stomach for a long time, accumulating until 
they are regurgitated (Clark and MacLeod 1982; Staudinger 
et al. 2014), and to limit biases in the results, these hard 
parts have been omitted from the quantitative analysis. 
However, cephalopods still dominated the stomach contents 
by weight (58.9 %W). Among the remaining cephalopods, 
four were all partially digested (298.1 g) and were identified 
as one Histioteuthidae (4.35 %N, 1.44 %W), one 
Ommastrephidae (4.35 %N, 32 %W), one Ornithoteuthis sp. 
(4.35 %N, 5.35 %W) and one Histioteuthis meleagroteuthis 
(4.35 %N, 6.29 %W). Crustaceans were the second most 
important prey category of the Kogia’s diet (29.44 %W), 
with remains found in five of the six stomachs (83.33 % 
FO). Three families of deep-water shrimp were identified 
(Oplophoridae, Pasiphaeidae and Gnathophausiidae). Remains 
of the family Pasiphaeidae were found in two of the six 
stomachs (>4.35 %N, 1.72 %W), remains of the shrimp genus 
Gnathophausia sp. were found in one stomach (30.4 %N, 2.01 
%W), and one shrimp of the genus Oplophorus was found in 
one stomach (4.35 %N, 0.23 %W). Fish also contributed to 
Kogia’s diet (66.67 %FO, 11.25 %W). Among the six stomachs 
analysed, four contained fish remains that could not be 
identified beyond class (all Actinopterygii) and one contained 
a fish of the family Tetraodontidae otherwise known as pufferfish 
(4.35 %N, 3.66 %W). Nematodes and other worm-like parasites 
that could not be identified were found in all six stomachs. 

The analysis of stomach contents presented here indicates 
that, in this region, both species of Kogia feed mainly on squid, 
and complete their diet with crustaceans and a few fish. These 
results are consistent with those reported previously from 
New Caledonia strandings by Bustamante et al. (2003) and 

those reported by West et al. (2009) for the diet of pygmy 
sperm whales in the Hawaiian Archipelago. For both species 
of Kogia, the prey items identified do not all belong to one 
layer in the ocean, but rather span the epipelagic, mesopelagic 
and bathypelagic layers (West et al. 2009; cephalopods see 
Young and Vecchione 2009, crustaceans see Meland and Aas 
2013, fish see Roberts et al. 2015). In some cases, identified 
prey items are also known to carry out diel vertical migrations 
(Histioteuthis meleagroteuthis, (Quetglas et al. 2010); 
Pasiphaea, (Cartes 1993)). This distribution of prey in the 
water column makes it difficult to estimate the depth at 
which either species of Kogia is feeding. Previous studies of 
diet suggest that pygmy sperm whales generally feed in deep 
shelf and slope waters (Santos et al. 2006). Clarke (2003) 
suggested that both species of Kogia could dive between 
500 and 1000 m because they share the same prey species 
as sperm whale. Some authors believe the pygmy sperm 
whale takes its prey at or near the bottom because of the 
presence of benthic fishes and crabs and also because of its 
‘small underslung lower jaw and anterio-ventrally flattened 
snout’ (Santos et al. 2006). 

Kogia are cryptic species and their elusive behaviour make 
them difficult to visually observe at sea. To date, only one 
visual observation of a pygmy sperm whale in the Loyalty 
islands was confirmed. Nevertheless, the number of strandings 
of live animals (28% of the stranded Kogia) suggests that  these  
species may be more common in New Caledonian waters than 
the low number of observations at sea suggests. A recent study 
using a passive acoustic monitoring method highlighted 
that visual surveys underestimate the presence of Kogia 
(Hildebrand et al. 2019). 

More than 70% of the stranding events were found 
in the south-west part of the main island and more 
than half of those occurred between October and March. 
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Fig. 8. Stranding data recorded for short-finned pilot whales since 1991. (a) Number of individuals stranded per year. Stranding events are
indicatedwith horizontal white lines to distinguish isolated andmass strandings based on number of individuals. (b) Geographical locations of
events (with number of individuals represented as point size). Illustration credit: NOAA Fisheries.

Hénin and Cresswell (2005) identified an upwelling of 
cold water, about 10 km wide, outside the western barrier 
reef, more commonly observed in summer than in winter 
(October to March) and related to south-easterly wind 
events. This oceanographic feature is likely to result in 
relatively more productive waters that could attract 
Kogia, especially as this teuthophageous feeding species is 
known to associate with dynamic frontal zones and eddies 
(Virgili et al. 2018). 

Short-finned pilot whale
Although pilot whales account for only 7% of the stranding 

events (n = 16), they represent 35% (n = 127) of stranded 
individuals due to their tendency to mass strand (42% of 
the mass strandings reported). The 11 mass strandings 
documented in New Caledonia involved 2–50 individuals, 
but most of these events were of 10–15 animals. When 
interventions were possible most of the stranded animals 
were successfully refloated by rangers or the public. 
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There was no temporal trend observed in the number of 
stranding events of pilot whales (Fig. 8a; z = 1.03, 
P = 0.301), nor significant seasonal differences (χ2 test: 
χ2 = 2.1, P = 0.623) since more systematic record collection 
beginning in 1991. The majority of stranding events occurred 
in the south-western part of the main island and in the Isle of 
Pines (Fig. 8b). 

A 660-bp fragment of the mtDNA control region was 
successfully sequenced for 17 samples collected in New 
Caledonia (12 females and five males) from six stranding 
events. Two haplotypes that differed by two base pairs 
were identified, GmaNC01 and GmaNC02 (Hd = 0.309). 

Fourteen of the 17 stranded individuals shared haplotype 
GmaNC01, and the remaining three individuals shared 
haplotype GmaNC02. Both haplotypes were found in three 
of the seven mass-stranding events for which samples were 
available. The social structure of both species of pilot whales 
has been described as matrilineal, with several generations of 
maternally-related individuals associating in the same group 
(Amos et al. 1993; Heimlich-Boran 1993). Multiple previous 
studies of pilot whales have shown that small groups are likely 
made up of related individuals, suggesting some degree of 
matrilineal philopatry, whereas large groups are probably 
temporary associations of these smaller groups (short-
finned pilot whales – Madeira (Alves et al. 2013), Mariana 

Archipelago (Hill et al. 2019), Hawaii (Mahaffy et al. 2015); 
long-finned pilot whales – New Zealand (Oremus et al. 2013), 
Australia (Mahaffy et al. 2015; Hill et al. 2019)). This 
temporary formation of larger groups may be explained by 
temporary associations of social groups during mating 
seasons (Hill et al. 2019) or interactions between unrelated 
social groups during feeding (Oremus et al. 2013). The three 
mixed haplotype mass-stranding events (Table S5) around 
New Caledonia suggest short-finned pilot whales in this 
region also form larger aggregations of unrelated matrilines. 
Because calving is diffusely seasonal for the southern form 
with a peak in June–August but could happen year-round 
(Kasuya 2017), these three events that occurred in three 
different periods (February, May and September) could be 
linked to mating aggregations. 

A total of 112 sequences were downloaded from GenBank 
to form a geographic reference dataset for this species. This 
dataset was then aligned with the 17 sequences generated 
in this study and trimmed to a consensus length of 335-bp. 
The reduced sequence length described a total of 31 
haplotypes, defined by 25 variable sites (median-joining 
network, Fig. 9). Previous studies highlighted that the 
short-finned pilot whale includes at least two distinct 
morphological forms, the ‘Naisa’ and ‘Shiho’ forms (Yamase 
1760). These morphological forms have been examined at 
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Fig. 9. Median-joining network based on a 335 bp alignment of 17 mtDNA control region sequences from short-finned pilot whales
stranded in New Caledonia and 31 short-finned pilot whales worldwide reference haplotypes. Size of circles represents relative
frequencies for New Caledonian pilot whales; colours represent putative populations of origin. The lengths of black lines represent
the number of base changes. Except for individuals sampled in New Caledonia, only one sequence per haplotype per region has been
represented here.
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the molecular level based on mitogenomes and nuclear 
single nucleotide polymorphism (SNP) loci (Van Cise 
et al. 2019). Based on mitogenome, authors suggested 
the existence of four genetic clades within the species: the 
clade ‘Atlantic’, the  clade  ‘Shiho’ encountered on the 
eastern Pacific Ocean and northern Japan, the clade ‘Naisa’ 
encountered on the western/central Pacific and Indian 
Ocean, and the ‘Clade 3’ having the same distribution 
of the ‘clade Naisa’ extending into the eastern Pacific 
Ocean. As for other regions in the South Pacific, both 
mitogenomes clades ‘Nasia’ and ‘Clade 3’ are represented 
in New Caledonia, as they matched with GmaNC01 and 
GmaNC02 respectively. 

Striped dolphin
Striped dolphins were first identified in New Caledonia 

during a mass-stranding event that occurred in the south 
lagoon, in the western part of Prony Bay, on 18 August 2019. 
A total of 11 animals stranded, seven were dead before help 
arrived, two were successfully rescued, and two died during 
the rescue attempt. 

A 454-bp fragment of the mtDNA control region was 
successfully sequenced for eight individuals from this 
mass-stranding event. This fragment length resolved seven 
haplotypes with 28 variable sites. Only two (one male, one 
female) of the eight individuals shared the same mtDNA 
haplotype and, unlike the putative dwarf sperm whale 
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Fig. 10. Median-joining network based on a 458 bp alignment of eight mtDNA control region sequences from striped dolphins stranded in
NewCaledonia and 75 striped dolphins worldwide reference haplotypes. Size of circles represents relative frequencies for NewCaledonian
striped dolphins; colours represent putative populations of origin. The lengths of black lines represent the number of base changes. White
dots represent unsampled median haplotypes. Except for individuals sampled in New Caledonia, only one sequence per haplotype per
region has been represented here.
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cow–calf pair, there is no physical evidence to suggest these 
two form a parent–offspring pair. 

A total of 107 sequences were downloaded from GenBank 
to form a geographic reference dataset for striped dolphins. 
These were aligned with the eight sequences identified in 
New Caledonia and trimmed to provide a final dataset of 
75 haplotypes (median-joining network, Fig. 10). There was 
only one shared haplotype between New Caledonia and the 
global reference dataset, ScoNC01. This haplotype was 
identified in two individuals stranded in New Caledonia 
and in one individual from the China Seas, and is the only 
haplotype shared between any regions in this dataset. No 
phylogeographic signal was detected in the network, however 
there is a lack of available published data from the South 
Pacific for comprehensive comparison of New Caledonia 
with other locations in this region. 

The results highlighted here are consistent with those 
previously published on the genus Stenella (Faria et al. 
2022). For many species of Stenella, genetic diversity is high 
compared to other Delphinidae species (e.g. Caballero et al. 
(2013)) and no strong phylogeographic signal is detected. 

Conclusions and perspectives

The monitoring of stranding events in New Caledonia over 
several decades has allowed for the collection of a great 
variety of biological and ecological data, contributing to an 
increased knowledge of marine mammal species in this 
region, which can help guide conservation measures. This 
surveillance was made possible through collaboration between 
scientists, governmental and provincial services, and the 
public, including volunteer veterinarians. Since 2016, training 
and outreach were provided to rangers, veterinarians, and 
various public safety officers to support their engagement 
in the scientific monitoring of stranding events. In support 
of this rudimentary, yet efficient, stranding network, a 
stranding monitoring website (www.rescue.ird.nc) was 
developed (Wahoulo 2019) and has been maintained online 
by IRD Nouméa since 2018. As of today, the objectives of 
this repository and platform are to (1) allow the stranding 
network field agents to report data in a standardised format; 
(2) create a centralised, online, and secure database for 
managers and scientists to retrieve information; (3) generate 
annual stranding listings to communicate to the French 
National Stranding Network (https://www.observatoire-
pelagis.cnrs.fr/echouages/reseau-national-echouage/), and 
(4) provide a publicly accessible interactive map, displaying 
the locations of all marine mammal strandings in New 
Caledonia. In addition to being a great source of scientific 
knowledge, strandings are also exceptional and thought-
provoking events that stimulate the public’s awareness of 
marine mammal protection and ocean conservation at large. 
For these reasons, the New Caledonian long-term stranding 

monitoring acts as a reference for the South Pacific and as 
such, warrants continued support going forward. 

Supplementary material

Supplementary material is available online. 
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