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Abstract
We assessed trace elements concentration in European pond turtle (Emys orbicularis) from Brenne Natural Park (France). We 
sampled road-killed turtles (N = 46) to measure the concentrations of 4 non-essential (Ag, Cd, Hg, and Pb) and 10 essential 
(As, Co, Cr, Cu, Fe, Mn, Ni, Se, V, and Zn) elements in muscle, skin, liver and claws. Body size or sex did not influence the 
concentrations of most elements; except for Hg (liver, skin and claws) and Zn (muscle) which increased with body size. We 
found relatively high concentrations of Hg and Zn, possibly linked to fish farming. This result deserves future investigations 
to evaluate possible ecotoxicological effects on E. orbicularis.
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Wetlands are important habitats for biodiversity, yet they 
are among the most endangered ecosystems in the world, 
suffering from a drastic reduction of their surface and from 
a degradation of water quality (Schneider et  al. 2017). 
Monitoring environmental contaminations in wetlands is 
difficult because they are connected to complex and large 
hydric networks composed by both surface and underground 
waters. As a consequence, the connectivity of aquatic sys-
tems can induce contamination in areas that otherwise 
appear unscathed from direct sources of pollution (Baker 
1992). Among environmental contaminants, trace elements 
are well-known for their ability to enter and move across 
aquatic environments (Agarwal 2009). These elements com-
prise both non-essential elements (that exhibit high toxic-
ity at low concentrations) and essential elements (that may 
become toxic when they exceed normal levels) (Förstner and 
Wittman 1981). Overall, trace elements represent a threat 

to aquatic ecosystems because of their high toxicity, persis-
tence, bioaccumulation in organisms and biomagnification 
across trophic levels (Agarwal 2009).

Freshwater turtles are suitable organisms to survey con-
tamination levels in complex aquatic ecosystems (Overmann 
and Krajicek 1995; Ayub et al. 2001; Nagle et al. 2001; 
Bergeron et al. 2007; Yu et al. 2011; Malik et al. 2013; Yad-
ollahvand et al. 2014; Allender et al. 2015; Slimani et al. 
2018). First, they are widely distributed and occupy a variety 
of habitats. Second, they have a long life expectancy, which 
allows studying bioaccumulation processes and long-term 
trends of contaminants. Finally, most species are sedentary 
and provide information on the contamination at a precise 
location.

In this study, we used opportunistic sampling of road-
killed European pond turtles (Emys orbicularis) to study 
trace element contamination of one of the largest French 
wetlands: the Brenne Natural Park. The goals of our descrip-
tive study were to document the concentrations of 4 non-
essential trace elements (Ag, Cd, Hg, and Pb) and 10 essen-
tial trace elements (As, Co, Cr, Cu, Fe, Mn, Ni, Se, V, and 
Zn) in the muscle, skin, liver and claws of E. orbicularis; 
and to investigate the relationship between the concentra-
tions of these elements and the sex and the size of the turtles.
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Materials and Methods

Emys orbicularis is a small European freshwater turtle 
species (Priol et al. 2008). Carcasses of accidentally killed 
pond turtles were found on roads situated in vicinity of the 
Réserve Naturelle Nationale de Chérine (46°47′25.23″N, 
1°12′3.54″E) between 2008 and 2014. A total of 46 turtles 
were collected including 38 adults (17 females, 16 males, 
5 unsexed individuals) and 8 juveniles. We used plastron 
length as an index of body size.

All individuals were dissected to take samples of the 
posterior right leg muscles and skin, liver and claws 
(Table 1). Because of the limiting mass of the claw sam-
ples, only Hg concentrations were measured in this tissue. 
The muscles, skin and liver samples were lyophilized and 
hand-ground with a porcelain mortar and pestle. Claws 
were washed three times with a mixture of 2:1 chloroform/
methanol solution in an ultrasonic cleaner and rinsed in 
milli-Q quality water. Claws were then dried for 48 h at 
50°C. The average weights of the tissue samples used for 
trace element analysis were 200 mg for muscles samples, 
215 mg for skin samples, 119 mg for liver samples and 
12 mg for claws.

Total Hg concentrations were measured using and 
atomic absorption spectrophotometer (Advanced Mer-
cury Analyser-254, Altec) on dried tissue aliquots 
(ranging from 2 to 10 mg) as described by Chouvelon 
et  al. (2009). Accuracy was checked using TORT-2 
Lobster Hepatopancreas (NRC, Canada; certified Hg 
concentration: 0.27 ± 0.06  µg  g−1  dw) as certified 

reference material (CRM). Our measured values were 
0.245 ± 0.003 µg g−1 dw (N = 4) showing a recovery of 
91%. Blanks were analysed at the beginning of each set of 
samples and the detection limit of the method was 0.05 ng.

Other elements (Table 1) were analysed using a Var-
ian Vista-Pro ICP-OES and a Thermo Fisher Scientific X 
Series 2 ICP-MS (following Kojadinovic et al. 2011). CRM 
(DOLT-4 dogfish liver and TORT-3 Lobster Hepatopan-
creas, NRC, Canada) and blanks treated and analysed in 
the same way as the samples were included in each ana-
lytical batch. The recovery ratio were in good agreement 
with DOLT-4 [94% (Ag); 99% (As); 105% (Cd); 104% (Cu); 
90% (Fe); 99% (Ni); 87% (Pb); 101% (Se) and 101% (Zn)] 
and TORT-3 [109% (As); 101% (Cd); 101% (Co); 95% (Cr); 
103% (Cu); 86% (Fe); 96% (Mn); 97% (Ni); 93% (Pb); 101% 
(Se); 99% (V) and 96% (Zn)]. The limits of quantification 
(µg g−1) were 0.01 (Ag, Co, Cd, Mn, Pb); 0.12 (As, Cr); 0.02 
(Cu); 5.03 (Fe, Zn); 0.05(Ni); 0.5 (Se); and 1.26 (V). Trace 
element concentrations are expressed in µg g−1 dw.

When trace elements concentrations were lower than the 
limit of detection (LoD) in more than 30% of the samples 
(Table 1), these samples were excluded from statistical 
analyses (EPA 2000). When trace elements concentrations 
were lower than LoD in less than 30% of the samples, val-
ues below LoD were replaced by (LoD) × 0.5 for statis-
tical analyses (EPA 2000). To investigate the influence of 
sex on trace element concentrations, possible sexual size 
dimorphism was considered: plastron length was compared 
between sexes with a Kruskal–Wallis test (data were not nor-
mally distributed). Because females were larger than males 
(see results), we used ANCOVAs to test for sex effects in 

Table 1   Trace elements 
concentrations (µg g−1 dw) in 
skin, muscle, liver and claws 
(Hg only) of E. orbicularis 

N = sample with concentration above the limit of detection (LoD)/total sample size

Elements Muscle Skin Liver Claws

N Mean ± SD N Mean ± SD N Mean ± SD N Mean ± SD

Essential
 As 35/39 0.64 ± 0.39 42/44 1.17 ± 1.02 15/16 0.56 ± 0.57 – –
 Co 39/39 0.14 ± 0.09 44/44 0.18 ± 0.19 16/16 0.48 ± 0.91 – –
 Cr 39/39 7.36 ± 4.55 42/43 4.00 ± 2.04 8/16 3.87 ± 12.68 – –
 Cu 39/39 5.00 ± 0.82 44/44 3.02 ± 0.92 16/16 11.98 ± 4.54 – –
 Fe 39/39 279 ± 115 42/42 316 ± 173 11/11 464 ± 164 – –
 Mn 34/34 6.79 ± 4.72 40/40 14.32 ± 13.68 16/16 10.44 ± 13.41 – –
 Ni 39/39 2.72 ± 2.13 43/43 1.61 ± 0.82 15/16 0.63 ± 1.42 – –
 Se 38/38 3.17 ± 1.03 44/44 2.25 ± 0.83 16/16 7.56 ± 7.89 – –
 V 0/39 <LoD 2/44 0.99 ± 0.12 5/17 9.64 ± 4.51 – –
 Zn 39/39 161 ± 30 44/44 64 ± 15 16/16 139 ± 36 – –

Non-essential
 Ag 15/39 0.019 ± 0.010 25/44 0.026 ± 0.021 11/17 0.027 ± 0.016 – –
 Cd 26/39 0.015 ± 0.012 24/44 0.013 ± 0.012 15/15 0.129 ± 0.123 – –
 Hg 39/39 0.662 ± 0.375 44/44 0.484 ± 0.367 17/17 1.128 ± 1.077 43/43 1.346 ± 0.939
 Pb 39/39 0.21 ± 0.19 44/44 0.36 ± 0.31 16/18 0.74 ± 2.51 – –
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trace element concentrations, using plastron length as the 
covariate. To investigate the influence of body size (hence 
presumably age) on trace element concentrations, and thus 
the bioaccumulation of these elements through time, we 
used Spearman rank’s correlation between trace elements 
and plastron length.

Results and Discussion

The mean concentrations of each trace element are presented 
in Table 1. Only four elements (Cd in muscle and skin; Cr in 
liver; Ag in muscle, skin and liver and V in muscle, skin and 
liver) were below the LoD in > 30% of individuals (Table 1).

Although females were larger than males (Kruskal–Wal-
lis χ²=19.7449, df = 1, p < 0.01), sex did not influence the 
concentrations of trace elements (all p > 0.12). This suggests 
that feeding, metabolism or growth rates were broadly simi-
lar for both genders (Allender et al. 2015; Yu et al. 2011) 
and that contrarily to what has been shown in another spe-
cies (Nagle et al. 2001) or in sea turtles (Guirlet et al. 2008), 
eggs may not represent a major excretion pathway in female 
E. orbicularis.

Most trace elements concentrations did not correlate 
with body size suggesting that E. orbicularis does not 
bioaccumulate these contaminants with age as showed in 
other turtle species (Allender et al. 2015; Yadollahvand 
et al. 2014). Yet, and similarly to other studies (Overmann 
and Krajicek 1995; Nagle et al. 2001; Bergeron et al. 2007; 
Yu et al. 2011), we found two notable exceptions to this 
trend: Zn concentrations (in muscle, rs = 0.49, p < 0.05; 
Fig. 1) and Hg concentrations (in liver, skin and claws) 
were correlated with body size (respectively rs = 0.56, 

p < 0.05; rs = 0.44, p < 0.05; rs = 0.40, p < 0.05; Fig. 2). 
These results suggest that these elements bioaccumulate 
over the life of the turtle. Interestingly, these two ele-
ments were found in relatively high concentrations (up 
to 208 µg g−1 dw for Zn and 4.451 µg g−1 dw for Hg), 
suggesting that excretion rates do not compensate for Zn 
and Hg exposure.
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Fig. 1   Relationship between turtle size (plastron length) and concen-
trations of Zn in muscles. Symbols stand as follow: white squares for 
juveniles, black circles for adult males, light grey triangles for adult 
females and dark grey diamonds for unsexed adults
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Fig. 2   Relationship between turtle size (plastron length) and concen-
trations of Hg in A liver, B skin and C claws. Symbols stand as fol-
low: white squares for juveniles, black circles for adult males, light 
grey triangles for adult females and dark grey diamonds for unsexed 
adults
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Bioaccumulation of Hg in its methylated form is a well-
known process in vertebrates as this non-essential metal is not 
regulated and bound to proteins potentially leading to adverse 
effects (Eagles-Smith et al. 2018). It is noteworthy that the 
value of Hg we report in various tissues of E. orbicularis are 
among the highest reported for freshwater turtles (Yu et al. 
2011; Zapata et al. 2014; Slimani et al. 2018), and the conse-
quences of such high values should be investigated.

Zn is an essential metal subjected to homeostatic regulation 
as it included in the functional groups of various enzymes, play 
a structural role in respiratory pigments and metalloenzymes, 
and can act as activating co-factor for various proteins (see 
e.g. Simkiss 1979; Williams 1981). Accordingly, Zn concen-
trations measured here could be physiological and thus not a 
problem on the health status of E. orbicularis. Nonetheless, 
the increase of Zn concentrations with age is likely due to its 
accumulation on specific metalloproteins such as metallothio-
neins which serve as intracellular protein in metal homeostasis 
(Vallee 1991). Future investigations on metallothioneins in E. 
orbicularis would be needed to validate this hypothesis. In 
addition, the values we report are substantially higher than 
those reported for other species of turtles (Malik et al. 2013; 
Yadollahvand et al. 2014), and the potential effects of such 
high values of Zn should be investigated.

Although the sources of Hg and Zn contamination remain 
unknown, several hypotheses can be proposed. For instance, 
the concentrations of Hg we detected may be related to a 
natural contamination due to the methylating activity of 
microorganisms in anoxic sediments rather than a direct 
anthropogenic source of contamination (Morel et al. 1998). 
Alternatively, relatively high concentrations of both Hg 
and Zn could be linked to the composition of fish pellets 
used for fish farming that occur in many ponds of Brenne. 
Indeed, commercial fish pellets exhibit high Hg concentra-
tions of marine origin (Hansson et al. 2017; see also Lemaire 
et al. 2018) and are enriched with Zn oxide (EFSA 2012). 
Future studies should usefully investigate both the origin 
of Hg and Zn as well as the physiological and toxicologi-
cal consequences of elevated levels of these elements for E. 
orbicularis (Meyer et al. 2014).
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