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A B S T R A C T

Mercury (Hg) contamination in marine ecosystems poses a significant environmental threat due to its high 
toxicity, persistence in the environment, and tendency to bioaccumulate in organisms and biomagnify in food 
webs. Understanding how Hg moves through these food webs is essential for assessing its ecological and health 
impacts. To investigate the trophic dynamics of Hg in Rayong Bay, Gulf of Thailand, we collected marine or
ganisms from the pelagic and benthic food webs during 2022–2023 and analyzed the total mercury content 
(THg) in plankton (phytoplankton, zooplankton, and fish larvae) and in 81 marine animal species. Furthermore, 
the stable nitrogen and carbon isotope values (δ15N and δ13C) were measured to establish their trophic levels 
(TLs) and potential food sources in the food web. Based on these analyses, we calculated the biomagnification 
factor using TL-adjusted ratios (BMFnorm) and trophic magnification factor (TMF) for the different TLs. BMFnorm 
values exceeded 1.0 in over 40 % of cases for both the pelagic and benthic food webs, indicating THg bio
magnification from prey to predator. Notably, the pelagic food web exhibited a markedly higher TMF value 
(TMF = 6.68) compared to that of the benthic food web (TMF = 2.06), suggesting stronger Hg biomagnification 
within the pelagic food web. Our findings also highlight the consumption risk of Hg in some fish species in the 
Rayong Bay food webs, emphasizing the need for continued monitoring and mitigation strategies to safeguard 
both human and ecological health.

1. Introduction

In recent years, aquatic environments have been affected by climate 
change, overfishing, aquaculture, eutrophication, and pollution, leading 
to substantial food web changes (du Pontavice et al., 2020; Yan et al., 
2019). In particular, mercury (Hg) pollution poses a major environ
mental threat due to its toxicity, persistence, and accumulation in 
aquatic organisms (Qu et al., 2022). It is also a global concern, reaching 
even the most remote oceanic regions (Eagles-Smith et al., 2018), which 

has led to growing awareness of Hg bioaccumulation in aquatic systems 
(Dang and Wang, 2010).

Several studies (e.g., Córdoba-Tovar et al., 2022; Hilgendag et al., 
2022; Lavoie et al., 2013) have shown an increasing trend of Hg along 
the food webs. This trend is primarily driven by the biomagnification of 
methylmercury (MeHg), which accounts for over 90 % of total mercury 
(THg) in most marine fish tissues (e.g., Bloom, 1992; Kehrig et al., 2009; 
Windom and Cranmer, 1998). However, exceptions to this paradigm 
exist, such as in microplankton (Seixas et al., 2014), bivalves (Briant 

This article is part of a special issue entitled: Mercury Biogeochemistry published in Environmental Research.
* Corresponding author.

E-mail address: chawalit.cha@chula.ac.th (C. Charoenpong). 

Contents lists available at ScienceDirect

Environmental Research

journal homepage: www.elsevier.com/locate/envres

https://doi.org/10.1016/j.envres.2025.121599
Received 22 November 2024; Received in revised form 4 April 2025; Accepted 10 April 2025  

Environmental Research 278 (2025) 121599 

Available online 17 April 2025 
0013-9351/© 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies. 

https://orcid.org/0009-0007-8855-599X
https://orcid.org/0009-0007-8855-599X
https://orcid.org/0000-0001-6067-307X
https://orcid.org/0000-0001-6067-307X
https://orcid.org/0000-0003-4948-2859
https://orcid.org/0000-0003-4948-2859
https://orcid.org/0009-0002-8468-9038
https://orcid.org/0009-0002-8468-9038
mailto:chawalit.cha@chula.ac.th
www.sciencedirect.com/science/journal/00139351
https://www.elsevier.com/locate/envres
https://doi.org/10.1016/j.envres.2025.121599
https://doi.org/10.1016/j.envres.2025.121599
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envres.2025.121599&domain=pdf


et al., 2017), and benthic macroinvertebrates (Bradford et al., 2023). 
These deviations are due to metabolism, absorption, and excretion 
pertaining to specific animal species (Bradley et al., 2017). As a 
bioavailable form of Hg, MeHg is much more extensively and rapidly 
absorbed than inorganic mercuric ion (Hg(II)) in the gastrointestinal 
tract (Clarkson and Magos, 2006). MeHg can easily be absorbed into the 
body and accumulates over time in soft tissues, making it the dominant 
form of Hg in marine food webs. MeHg poses risks to the nervous system, 
genetic material, reproductive systems, and various physiological pro
cesses in both marine organisms and humans, and can even cause death 
(Ackerman et al., 2016; Byczkowski, 2005; de Almeida Rodrigues et al., 
2019; Scheuhammer et al., 2007, 2015). In a comprehensive review of 
20 studies on human dietary exposure to seafood, Bradley et al. (2017)
estimated that the bioaccessibility of MeHg is higher than that of Hg(II). 
As a result, MeHg is considered the most toxic form of Hg (Manceau 
et al., 2021).

Hg bioavailability, bioaccumulation, and biomagnification are 
influenced by various factors, including the chemical form of Hg, envi
ronmental and physical conditions, ecological factors (e.g., food web 
structure and size, population density), and biological factors (e.g., 
trophic level, food structure, and body size) (Dang and Wang, 2012; 
Gentès et al., 2021; Hosseini et al., 2013, 2014). Over 90 % of Hg 
ingested by most fish comes from their diet, which mostly consists of Hg 
in its organic forms (Murillo-Cisneros et al., 2019). Therefore, structural 
variations in food webs can affect the pathways of bioavailable Hg in 
aquatic systems. Understanding trophic ecology and food web dynamics 
allows for the approximation of the Hg found in members of varying 
trophic levels (TLs) and enables direct estimation of biomagnification 
(Cai et al., 2007; Ferriss and Essington, 2014; Murillo-Cisneros et al., 
2019).

To elucidate Hg biomagnification, it is necessary to determine the 
TLs of the organisms, which are commonly estimated using bulk stable 
isotope analysis. This approach can reveal food sources, foraging envi
ronments, and the effectiveness of pollutant transport throughout food 
webs (Hobson et al., 2002; Hobson and Welch, 1992; Jardine et al., 
2006). Since nitrogen isotopes (δ15N) increase predictably with each 
trophic step, typically enriched by 3 ‰ – 4 ‰ relative to the diet, they 
are frequently used to assess the trophic position (Deniro and Epstein, 
1981; Minagawa and Wada, 1984; Peterson and Fry, 1987). As such, 
δ15N can be used to calculate biomagnification metrics, linking trophic 
position to Hg concentrations. In contrast, carbon isotopes (δ13C) hardly 
change as carbon moves through food webs (DeNiro and Epstein, 1978; 
France and Peters, 1997; Rounick and Winterbourn, 1986). Therefore, 
δ13C is typically used to evaluate the diet sources for an organism when 
the isotopic signatures of these sources are sufficiently different (Post, 
2002).

Over the past few decades, rapid economic development and popu
lation growth in Southeast and South Asia (Oanh and Huy, 2024; Tsui 
et al., 2025) have increased human activities, contributing to elevated 
environmental contamination by heavy metals in these regions (Safiur 
Rahman et al., 2019), including Hg in the Gulf of Thailand (GOT) 
(Ubonyaem et al., 2023). Hg in the GOT originates from various 
anthropogenic activities (Ritonga et al., 2022), including coastal 
erosion, deforestation, untreated domestic waste (Cheevaporn and 
Menasveta, 2003; Worakhunpiset, 2018), gold mining activities in 
different areas along Mekong River (Udomchoke et al., 2010), irrigation 
runoff from agricultural practices utilizing Hg-bearing pesticides, 
notably along the lower Mekong River Basin (Guédron et al., 2014), 
coal-fired power plants (Mahavong et al., 2017; Pham et al., 2015; 
Thepanondh and Tunlathorntham, 2020), untreated wastewater from 
industrial estates and petrochemical complexes (Cheevaporn and 
Menasveta, 2003), oil and gas exploration in the GOT (Le et al., 2023; 
Pojtanabuntoeng et al., 2011; Sompongchaiyakul et al., 2018; Yod-In-
Lom & Doyle, 2002).

Several studies have assessed the levels of Hg in marine organisms in 
Rayong Bay (e.g., Agusa et al., 2007; Thongra-ar & Parkpian, 2002) and 

in the GOT region (e.g., Prabakaran et al., 2024; Ritonga et al., 2022; 
Windom and Cranmer, 1998). However, research on Hg bio
magnification in Thai water food webs using stable isotopic techniques 
is still lacking. Moreover, Hg biomagnification studies in tropical areas 
are significantly less documented than in temperate or polar regions 
(Lavoie et al., 2013). Thus, there is a pressing need for more research 
such as this current study to fill in the gaps in this subject.

In this study, marine organisms were collected from the pelagic and 
benthic food webs of Rayong Bay, Thailand. We analyzed THg along 
with δ15N and δ13C values to elucidate food web structure and quantify 
THg biomagnification. This study aimed to: (1) investigate THg accu
mulation across various marine organisms and (2) assess THg bio
magnification in the marine food web by calculating trophic 
magnification slopes (TMSs) and trophic magnification factors (TMFs) 
for the study area. By addressing this knowledge gap, we hope to 
contribute to the global understanding of THg bioaccumulation and to 
inform strategies for mitigating its detrimental effects on marine eco
systems and human health.

2. Materials and methods

2.1. Sampling location

Rayong is situated in Thailand’s Eastern Economic Corridor (EEC) 
and contains numerous industrial estates. Notably, Map Ta Phut is the 
largest industrial zone, encompassing five industrial estates, one deep- 
sea port, and 151 major factories (Burnett et al., 2019). Industrial ac
tivities in this area have sparked significant environmental concerns, 
including air and water pollution, industrial accidents, and potentially 
illegal hazardous waste releases (Saengsupavanich et al., 2009; Silla
papiromsuk et al., 2022; Soytong and Perera, 2017).

Rayong Bay, situated south of Rayong, serves multiple purposes, 
including fisheries, tourism, and natural conservation, and is also the 
coastal area near urban centers, fertile agricultural land, and export- 
oriented manufacturing and industry (Janmaimool, 2016; Kawichai 
et al., 2024; Kumar et al., 2023). Despite this, Rayong Bay remains a 
vital center for fisheries (both wild-capture fisheries and aquaculture) 
and tourism. Our sampling area was located on the eastern side of the 
deep-sea port (Fig. 1).

2.2. Sample collection and preparation

Plankton (phytoplankton, zooplankton, and fish larvae) were 
sampled from 18 stations during three campaigns: May 2022, August 
2022, and February 2023. Fish and shellfish were collected from three 
trawling stations during four sampling campaigns: March 2022, May 
2022, August 2022, and February 2023. Additionally, fish and shellfish 
were taken from the fishing gears of four nearby small-scale fishing 
communities, namely Kao Yod (KY), Laem Rung Rueang (LRR), Khlong 
Kacher (KKC), and Suan Son Beach (SS), during February 2022, July 
2022, September 2022, November 2022, January 2023, and March 2023 
(Fig. 1).

2.2.1. Plankton
Plankton samples were collected using pumping or trawling 

methods, depending on the target size. Phytoplankton were sampled 
from surface waters (1-m depth) using a submersible pump (DEXZON®, 
HP-550S) equipped with an 8-cm diameter tube and a nominal pumping 
rate of 60 L/min (e.g., Chouvelon et al., 2019). The pump was connected 
to a combined filtration system consisting of a 100-μm mesh net (T. 
Science®) to screen out any plankton larger than 100 μm (including 
most zooplankton). In turn, the targeted phytoplankton samples (n = 13) 
were collected in a 20-μm mesh plankton net (T. Science®). Microscopy 
examination identified the dominant species during sampling as Chae
toceros spp., Bacteriastrum spp., and Rhizosolenia spp.

To account for the patchy distribution and vertical movement of 
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zooplankton, we conducted integrated vertical hauls from near-bottom 
depth to the surface using a 100-μm plankton net (T. Science®), 
following the method described by De Bernardi (1984). This approach 
specifically targeted zooplankton (n = 8). The dominant groups identi
fied were copepod nauplii, calanoid copepods, and cyclopoid copepods.

Fish larvae or larger plankton (n = 6) were collected through 15-min 
surficial horizontal hauls using a 300-μm mesh plankton net (T. Sci
ence®) at a speed of 2.3-2.5 knots (e.g., Tesán-Onrubia et al., 2023). 
Apart from fish larvae, this so-called ichthyoplankton fraction contained 
harpacticoid copepods, Lucifer sp., and siphonophores.

All plankton samples were collected using bottles pre-cleaned with 
10 % HNO3 (v/v). To prevent contamination, powder-free latex gloves 
were worn during sampling. The collected samples were stored in ultra- 
clean, acid-washed containers and promptly transported to the labora
tory for processing. They were frozen, freeze-dried, and stored in a 
desiccator until chemical analyses, all of which were performed in 
triplicate.

2.2.2. Fish and shellfish
Fish and shellfish were collected using an otter trawl with double cod 

ends (4.0 and 2.5 cm mesh sizes) arranged in a stacked configuration to 
sort the catch by size. The otter trawl was towed parallel to the shoreline 
at a speed of 2.3-2.5 knots for 1 h (e.g., Phaksopa et al., 2021). Addi
tionally, we collected samples from various small-scale fishing gears 
varied by target species, seasons, and community preferences. These 
gears included crab sinking nets and shrimp floating nets.

A total of 315 specimens were sampled for chemical analysis 
(Table S1), including two species of bivalves (n = 23), two species of 
gastropods (n = 6), three species of crabs (n = 5), two species of shrimps 
(n = 4), six species of squids (n = 34), 24 species of pelagic fishes (n =
46), and 41 species of demersal fishes (n = 197). All fish and shellfish 
samples were placed in clean zip-lock bags and frozen. In the laboratory, 
they were thawed, measured, weighed, and dissected under 
contamination-free conditions. The edible muscle tissue was then cut 
into smaller pieces and homogenized. These samples were divided into 
two portions: one frozen at − 20 ◦C for Hg analysis and another freeze- 
dried and stored in a desiccator for stable isotope analysis.

Samples were classified into pelagic and benthic food webs based on 
ecological characteristics and taxonomic identification using the FAO 
Species Identification Guides (Carpenter and Niem, 1998a, 1998b, 
1999a, 1999b, 2001a, 2001b) while isotopic data were solely used to 

establish the trophic relationships within the pre-determined food webs.

2.3. Analytical methods

2.3.1. Hg contents in marine organisms
THg content in marine organisms was analyzed via thermal decom

position, amalgamation, and cold-vapor atomic absorption spectropho
tometry (DTD-AAS) following US-EPA method 7473 (US EPA, 2007). 
Briefly, dry plankton and wet marine animal samples (weighed by 
Sartorius® AX-224 balance) were introduced into a NIC® MA-3000 
Mercury Analyzer. The samples were first heated to 150 ◦C to remove 
moisture, and then to 850 ◦C to convert all Hg to volatilized Hg0. Oxygen 
gas (>99 %) at a flow rate of 0.2 L/min carried the Hg0 to a gold-coated 
sand amalgamator, while other gases were directed to a waste filter. The 
amalgamator was then heated to 200 ◦C, releasing Hg0, which was 
transported to the measurement cell where its vapor attenuated mono
chromatic light at 253.7 nm, following the Beer-Lambert Law.

Performance metrics, such as the limit of detection (LOD), the limit 
of quantification (LOQ), recovery, and precision, were used to validate 
the analytical procedures. The LOD and LOQ, computed by multiplying 
the standard deviation by 3 and 10, were 0.0016 μg/kg and 0.0050 μg/ 
kg respectively. Dry and homogenized certified reference material, 
DORM-4 (marine fish protein), from the National Research Council of 
Canada was used for quality assurance/quality control (QA/QC) stan
dard for each batch. The recovery for DORM-4 was 99.81 ± 4.37 % 
based on 25 repeated measurements.

All THg values were reported on a μg/kg wet-weight basis. Wet- 
weight basis THg concentrations for dry samples (e.g., plankton) were 
calculated by assuming 95 % water content for microseston (0.2-200 μm 
size class), as suggested by Hammerschmidt et al. (2013) and 90 % in 
zooplankton larger than 200 μm based on Knauer and Martin (1972).

2.3.2. Carbon and nitrogen stable isotopes
Stable isotope analysis was conducted at the Asian School of the 

Environment/Earth Observatory of Singapore, Nanyang Technological 
University and Thailand Institute of Nuclear Technology, using a 
Thermo Scientific® Flash Elemental Analyzer (EA) coupled with a Delta 
V Advantage Isotope Ratio Mass Spectrometer (IRMS). Approximately 
400 μg of freeze-dried and homogenized samples were weighed using a 
Mettler Toledo® XP6 microbalance and packed into pre-weighed 
Elemental Microanalysis® tin capsules (pressed 9 × 5 mm). The 

Fig. 1. Location of the Gulf of Thailand and Rayong Province (left) and Rayong Bay sampling stations (right). Bathymetric data were obtained from the General 
Bathymetric Chart of the Oceans (GEBCO) 2023 dataset, with depth contour intervals displayed at 5-m increments.
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capsules were introduced into the EA via the autosampler and com
busted at 1000 ◦C in the presence of oxygen, producing carbon dioxide 
(CO2) and nitrogen oxide (N2) gases, which were carried by helium (He) 
gas into the IRMS for isotopic analysis. Results were reported in δ no
tation (Eq. (1)), relative to the international reference standards: V-Pee 
Dee Belemnite (VPDB) for carbon isotopes and atmospheric N2 for ni
trogen isotopes. 

δ (‰)=
[(

Rsample
/

Rstandard
)

– 1
]
× 1000 Eq. 1 

where δ is the δ value for the isotope (in this core 15N or δ13C), Rsample is 
the ratio of heavy to light isotopes in the sample, and Rstandard is the ratio 
of heavy to light isotopes in the international standard.

In each run, two USGS reference standards (USGS-40 and USGS-41) 
were analyzed along with the samples to calibrate the raw data for the 
delta values of isotopes. Additionally, an in-house standard (L-glutamic 
acid) was included as a QA/QC measure to assess the quality of the 
analysis and to apply drift and size effect corrections. Based on the long- 
term analysis of this QA/QC standard, the analytical precision is 0.3 ‰ 
for δ15N and 0.2 ‰ for δ13C.

2.4. Data treatment

2.4.1. Biomagnification factors
Biomagnification factor (BMF) represents the ratio of the chemical 

concentration in the predator (numerator) to that of the prey (denomi
nator) as shown in Eq. (2) (Conder et al., 2012; Gobas et al., 2009). 
However, BMFs are highly sensitive to errors in TL assignment, partic
ularly when complex feeding groups, such as omnivores, are classified 
into binary categories (Sinclair et al., 2024). In this study, we applied a 
normalized BMF (BMFnorm) using TL-adjusted ratios (Eq. (3)), as done in 
numerous previous studies (e.g., Murillo-Cisneros et al., 2019; Pethy
bridge et al., 2012; Vainio et al., 2022). By using this TL-adjusted 
method, we can more accurately assess the true extent of BMFnorm by 
accounting for the expected increase in THg with increasing TLs 
(Franklin, 2016; Vainio et al., 2022). The BMFnorm was normalized by TL 
to standardize it to an exact TL difference of 1.0 between predator and 
prey. This adjustment is necessary when the actual TLs, as determined 
by δ15N analysis, deviate from 1.0, either exceeding or falling short of 
this value (Franklin, 2016). If BMFnorm exceeds 1.0, THg is considered a 
potential bio-accumulator (Gobas et al., 2009). 

BMF=
[
THgPredator

/
THgPrey

]
Eq. 2 

BMFnorm =
[
THgPredator

/
THgPrey

]/ [
TLPredator − TLPrey

]
Eq. 3 

where THgPredator is predator’s THg, THgPrey is prey’s THg, TLPredator is 
predator’s TLs from Eq. (4) (below), and TLPrey is prey’s TLs from Eq. (4)
(below).

2.4.2. Trophic magnification factor
Biomagnification of THg can lead to potentially toxic levels of Hg in 

aquatic animals (Burgess and Meyer, 2008). THg biomagnification was 
assessed using a linear relationship between TLs and 
logarithm-transformed THg (log10[THg]) (Matias et al., 2022; Vainio 
et al., 2022). The trophic magnification slope (TMS) and trophic 
magnification factor (TMF) were calculated for the food webs using the 
following formulas: 

TL=
[(

δ15Nconsumer − δ15Nproducer
) /

Δ15N
]
+ λ Eq. 4 

log10[THg] = a + b TL Eq. 5 

TMF=10b Eq. 6 

where TL represents the trophic level for each consumer species, 

δ15Nconsumer is the δ15N value for each consumer species, and δ15Nproducer 
is the δ15N value for the baseline organism. For the pelagic food web, 
phytoplankton was used as the baseline (λ = 1; primary producers), 
while filter-feeding Asian moon scallops (Amusium pleuronectes, δ15N =
3.59 ‰) were treated as primary consumers (λ = 2) for the benthic food 
web. The trophic enrichment factor (Δ15N) of 3.4 ‰, commonly used in 
marine studies (e.g., Borgå et al., 2012; Deniro and Epstein, 1981; 
Minagawa and Wada, 1984) was used in this study. In Eq. (5), the 
parameter “a” represents the intercept indicating the baseline concen
tration in a specific ecosystem and “b” is the slope of the linear rela
tionship between the log10[THg] and TL values, also known as the TMS.

A positive slope for TMS (TMS>0) indicates the potential for bio
magnification, where Hg concentration increases with each TLs (Gao 
et al., 2021; Monferrán et al., 2016; Saidon et al., 2024). Meanwhile, 
TMF for Hg represents the average increase in Hg concentration per TLs 
and is calculated for each food web as the antilog of the regression slope 
(Eq. (6)) (Borgå et al., 2012; Hilgendag et al., 2022; Lavoie et al., 2013). 
A TMF of 1 indicate that the chemical of interest does not biomagnify 
through the food web. When TMF>1, the biomagnification occurs, with 
an average factor of TMF per TLs. Conversely, a TMF<1 suggests that the 
decrease in chemical of interest with an average factor of TMF per each 
TLs in the food web (Valladolid-Garnica et al., 2023). TMF values are 
commonly compared across different ecosystems or chemicals of inter
est to understand variation in biomagnification (Borgå et al., 2012). The 
intercept, a in Eq. (5), at the baseline variability among ecosystems 
caused by different inputs of contaminants to the base of food webs, such 
as between different pelagic or benthic food webs. This allows the "rate 
of increase" per TL in the food web to be studied independently of the 
original exposure level.

2.5. Statistical analysis

Statistical analyses were conducted using Microsoft® Excel 2021 and 
IBM® SPSS®. The data’s normality was tested to choose between 
parametric and non-parametric tests. Non-parametric results were 
compared using the Kruskal-Wallis test, whereas parametric results were 
compared using ANOVA to assess differences in THg among different 
marine organisms.

Generalized linear mixed models (GLMMs) are an extension of 
generalized linear models that allow for the inclusion of both fixed ef
fects and random effects, and can handle non-normally distributed 
dependent variables (Dean and Nielsen, 2007). Fixed effects represent 
influences that are constant across all observations in a study. They are 
typically categorical variables, but can also be continuous. On the other 
hand, Random effects capture variability that is not explained by the 
fixed effects. They are often associated with grouping factors or indi
vidual differences. More details on GLMMs can be found in McCullagh 
and Nelder (2019).

In this study, GLMMs with a gamma distribution and a log link 
function were defined as follows: g(μ) = a + XiB + Zibi + ai + ei (Linder 
et al., 2017) where g is the link function relating the linear predictor to 
the expected value (μ) of the exponential family distribution function 
and XiB represents fixed-effects independent variables in the model. Xi is 
the design matrix for the predictor variables, and B is the matrix of 
predictor variables. Zibi represents the random effects component of a 
GLMM. In this specific case, the random effects component in the 
equation represents the different species. Zi is the design matrix for the 
random effects, and bi is the subject i. The term ai is the random intercept 
and ei is the error term.

Log10[THg] data were applied when necessary to meet normality 
assumptions. The absolute values of normalized regression coefficients 
(β) were used to evaluate the relative importance of different variables.
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3. Results and discussions

3.1. Stable nitrogen and carbon isotopes and food web descriptors

The trophic structure and food web dynamics of marine organisms in 
Rayong Bay were characterized using δ15N and δ13C. The values of δ15N, 
δ13C, and calculated TLs for all species were tabulated in Table S2 and 
shown in the δ15N – δ13C biplot space in Fig. 2. The range of fish δ13C 
values (− 21.6 ‰ to − 14.3 ‰) and δ15N values (4.75 ‰–12.7 ‰) from 
pelagic and benthic food webs in this study is in line with a previous 
study done in fish of Rayong Bay, which reported δ13C from − 19.0 ‰ to 
− 14.5 ‰ and δ15N from 6.5 ‰ to 12.6 ‰ (Udom et al., 2017). This 
suggests that the overall interactions among key species remain rela
tively stable over time.

3.1.1. Pelagic food web
In the pelagic food web, the δ13C values for all species ranged from 

− 22.7 ± 2.35 ‰ in the zooplankton to − 12.2 ± 2.57 ‰ in the bluetail 
mullet (Crenimugil buchanani, CB). The δ15N values ranged from 4.81 ±
1.25 ‰ in the phytoplankton to 11.4 ± 0.84 ‰ in the pickhandle bar
racuda (Sphyraena jello, SLE). Overall, plankton (i.e., phytoplankton, 
zooplankton, and fish larvae) exhibited lower δ13C and δ15N values 
compared to invertebrates and finfish (Fig. 2a) reflecting their role as the 
base of the pelagic food web.

The δ13C values in phytoplankton from Rayong Bay in this study 
ranged from − 24.1 ‰ to − 18.8 ‰, which falls well within the range of 
those observed in other natural populations (− 30 ‰ to − 9 ‰) 
(Kroopnick, 1985; Sackett et al., 1965; Williams and Gordon, 1970). In 
fact, open-ocean values can vary from − 35 ‰ at high latitudes to − 16 ‰ 
at low-mid latitudes (Goericke and Fry, 1994). Gearing et al. (1984)

Fig. 2. The relationship between δ13C and δ15N values for organisms from Rayong Bay: (a) pelagic food web and (b) benthic food web. Refer to Table S1 for detailed 
information on the corresponding codes.
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revealed that δ13C of phytoplankton communities fluctuates throughout 
the year, reflecting the dominant phytoplankton species during different 
seasons. Additionally, temperature (Fontugne and Duplessy, 1981; 
Sackett et al., 1965) and the δ13C of the inorganic carbon source used for 
photosynthesis (Deuser, 1970; Parker, 1964; Smith and Kroopnick, 
1981), which often change seasonally, have also been demonstrated to 
influence the δ13C signature of phytoplankton (Goering et al., 1990).

In the ocean surface layer, the δ15N of small organic particles is 
significantly influenced by how phytoplankton assimilate nitrogen from 
the seawater (Goering et al., 1990). This initial δ15N signature is then 
passed on through the food web. In this study, the δ15N value in 
phytoplankton (4.81 ± 1.25 ‰) is the lowest in the pelagic food web, 
followed by zooplankton (5.34 ± 1.24 ‰), fish larvae (6.10 ± 0.90 ‰), 
cephalopods (9.68 ± 0.86 ‰), and fishes (9.85 ± 1.54 ‰), respectively. 
This pattern indicates that δ15N becomes progressively higher as it 
moves up the pelagic food web (Fig. 2a).

Organic matter in our pelagic food web is passed from plankton all 
the way up to the apex species such as barracuda (Sphyraena putnamae, 
SP and Sphyraena obtusata, SOC), whose δ13C and δ15N values were 
enriched relative to cephalopods and other fishes (Fig. 2a). It is impor
tant to note that the bluetail mullet (Crenimugil buchanani, CB) is 
isotopically distinct from the rest of the food web in terms of carbon 
isotopes. CB is a species commonly found in estuaries and rivers (Roshith 
et al., 2022) and frequents these habitats, ascending rivers and coastal 
creeks as juveniles (Blaber and Whitfield, 1977). They feed primarily on 
detritus (Whitfield and Durand, 2023). As a result, they exhibit distinct 
δ13C values (− 12.2 ± 2.57 ‰).

Based on δ15N, the TLs in the pelagic food web ranged from 1.61 ±
0.37 in phytoplankton to 4.07 in obtuse barracuda (Sphyraena obtusata, 
SOC). In principle, phytoplankton should have a TL of 1 as primary 
producer. However, in this study, phytoplankton were collected by 
filtering seawater through 20-μm nets, with a 100-μm screen used to 
exclude larger particles and plankton. Consequently, this fraction may 
contain various particles ranging from 20 μm to 100 μm in size, 
including phytoplankton, particulate organic matter (POM), and 
detritus. As a result, the sample may have included POM containing 
detritus and microheterotrophs (Kopprio et al., 2023; Minor and Nal
lathamby, 2004; Wang et al., 2024), which could influence the δ15N 
value and potentially lead to an overestimation of the TL of this fraction 
(e.g., Kopprio et al., 2015). As expected, the obtuse barracuda (Sphyr
aena spp.) occupy high TLs, consistent with their classification as apex 
predators in marine ecosystems (D’Alessandro et al., 2011; O’Toole 
et al., 2010). This aligns with the established principle that top predators 
tend to have high δ15N values (Moteki et al., 2001; Richert et al., 2015).

3.1.2. Benthic food web
In the benthic food web, the δ13C values for all species ranged from 

− 20.0 ‰ in the razorfish (Aeoliscus strigatus, AS) to − 13.9 ± 0.81 ‰ in 
the pink ear emperor (Lethrinus lentjan, LL). In addition, the δ15N values 
in the benthic food web for all species ranged from 3.59 ± 1.23 ‰ in the 
Asian moon scallop (Amusium pleuronectes, APL) to 12.6 ‰ in the 
tigertooth croaker (Otolithes ruber, OR). As expected, finfish showed 
higher δ15N values than invertebrates similar to other previous studies 
(e.g., Murillo-Cisneros et al., 2019).

The shifts in δ13C (0 – 1 ‰) and δ15N (3 – 4 ‰) per TL, following 
widely-accepted values in previous literature (Deniro and Epstein, 1981; 
Minagawa and Wada, 1984; Peterson and Fry, 1987) allow us to track 
matter moves through the food web as evidenced in isotopic enrich
ments. Udom (2015) reported sediment organic matter (SOM) collected 
from Rayong Bay in October 2014 to have δ13C values of − 19.5 ± 1.09 
‰ and δ15N values of 1.75 ± 0.77 ‰. Following this shift in trophic 
enrichment, APL (δ13C = − 19.6 ± 0.98 ‰ and δ15N = 3.59 ± 1.23 ‰) 
showed enrichment of approximately 0.07 ‰ (δ13C) and 1.84 ‰ (δ15N) 
relative to SOM. He et al. (2019) studied the feeding habit of APL from 
South China Sea and found their main diet (as determined by gut con
tent) to be mostly diatoms. Hence, we used APL as a primary consumer 

(TL = 2) for this benthic food web.
The TLs of APL acts as the basis species in the benthic food web, was 

2.72 ± 0.36, while move up to invertebrate (e.g, Penaeus merguiensis and 
Portunus pelagicus) and fishes (e.g., Chiloscyllium hasseltii, Terapon jarbua, 
and Terapon theraps) and at the same time food source for top consumers 
(Fig. 2b). However, exceptions to this pattern exist for δ13C. The Indian 
volute (Melo melo, MME) is recognized as a specialized predator of other 
predatory gastropods (Morton, 1986). The shift in δ13C to less negative 
values (− 15.2 ± 0.64 ‰) suggests that MME derives its energy from 
different carbon sources. MME’s diet of other predatory gastropods 
could be enriched with δ13C derived from different sources, such as 
detritus or estuarine organic matter.

While not explicitly discussed or explored in this study, decomposers 
are essential contributors to the benthic food web (Bongiorni, 2012). 
Bacteria and fungi break down detritus and release nutrients back into 
the system, making them available for primary producers like micro
phytobenthos (Christianen et al., 2017). The different components and 
interactions within the benthic food web help us gain a deeper appre
ciation for the complex ways organisms obtain energy and nutrients in 
this environment.

A high degree of niche overlap is evident within the benthic food 
web. Compared to the pelagic food web (Fig. 2a), the benthic food web 
exhibits a broader range of carbon sources, greater trophic redundancy, 
and larger niche sizes (Fig. 2b). These results align with the relatively 
high complexity of coastal marine benthic food webs observed in pre
vious studies (e.g., McMeans et al., 2013; Rooney et al., 2006; Soko
łowski et al., 2012). In terms of trophic redundancy, multiple species in 
the benthic food web occupy similar trophic positions, potentially 
enhancing ecosystem stability by providing functional redundancy in 
energy transfer pathways (Schlenker et al., 2024). This redundancy is 
thought to buffer the system against environmental fluctuations such as 
climate and land-use changes (Cardinale et al., 2002; Price et al., 2019; 
Sanders et al., 2018), as the loss of one species could be compensated by 
others fulfilling a similar ecological role. In fact, Hilgendag et al. (2022)
found that the greater trophic diversity and trophic redundancy in the 
benthic food web appeared to reduce the efficiency by which Hg was 
transferred between TLs, resulting in lower trophic magnification of Hg 
compared to the pelagic food web. These findings highlight the impor
tance of understanding the complexities and redundancy within the 
benthic food web in maintaining ecosystem function and resilience.

3.1.3. Coupling between the two food webs
The overlap in the isotopic values between the benthic and pelagic 

food webs (Fig. 2a and b) suggests that some species may utilize carbon 
sources from both food webs. This reflects potential dietary plasticity or 
movement between habitats, highlighting the coupling between pelagic 
and benthic food webs, particularly in shallow coastal ecosystems and 
well-mixed waters (e.g., Briand et al., 2016; Giraldo et al., 2024; Giraldo 
et al., 2017; Nagata et al., 2015; Timmerman et al., 2021). In fact, most 
of our samples were collected at depths of less than 20 m (Fig. 1), further 
supporting this connection.

In coastal ecosystems, pelagic food webs primarily rely on phyto
plankton (Reynolds, 2008), whereas benthic food webs are supported by 
a diverse range of carbon sources (Hilgendag et al., 2022), including 
phytodetritus (Tamelander et al., 2006), benthic macrophytes (Bode 
et al., 2006), and terrestrial organic matter (Marcelina et al., 2018; 
Vinagre et al., 2019). The overlap between pelagic and benthic food 
webs is likely due to the diverse carbon sources utilized by benthic or
ganisms, including those derived from pelagic inputs (e.g., Hilgendag 
et al., 2022; Iken et al., 2010).

The classification of species into pelagic or benthic groups in this 
study followed FAO guidelines (Carpenter and Niem, 1998a, 1998b, 
1999a, 1999b, 2001a, 2001b), which provide a meaningful framework 
for initial ecological classification. However, as some species exhibit 
mixed feeding strategies, future research integrating complementary 
approaches—such as compound-specific isotope analysis of amino acids 
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or bulk sulfur isotope analysis—could offer deeper insights into trophic 
interactions and resource use (e.g., Góngora et al., 2018; Kim et al., 
2023; Lacombe et al., 2024; Trifari et al., 2024) beyond what was 
revealed using bulk nitrogen and carbon isotope analysis in this study. 
By employing these additional approaches, researchers could better 
delineate the actual food web to which each sample belongs or assess the 
degree of overlap between the two food webs.

3.2. THg levels in marine organisms

We analyzed plankton, shellfish, crustaceans, cephalopods, and 
pelagic and demersal fishes for THg (n = 342). The THg in these or
ganisms ranged from 0.45 ± 0.16 μg/kg in fish larvae to 708 ± 318 μg/ 
kg in Hasselt’s bambooshark (Chiloscyllium hasseltii, CH) (Table S2). 
Apart from plankton, considering all invertebrate and fish species 

together, the median, mean, and geometric mean of THg in the pelagic 
food web (n = 69) are 25.5, 49.4, and 25.9 μg/kg, respectively. Simi
larly, in the benthic food web (n = 246), THg concentrations are 52.0, 
113, and 55.5 μg/kg for both invertebrates and fish. In both invertebrate 
and fish species, THg values in the pelagic food web are approximately 
half of those in the benthic food web.

Animal size is one of the most significant factors affecting Hg in 
muscle tissues (Wren, 1986). In the GLMMs analysis, THg was modeled 
as a function of two predictors: total length and weight. This model, the 
fixed effect coefficient for total length was 0.065, indicating a significant 
positive relationship between THg and total length (p < 0.001), with 
increasing Hg concentration with greater total length. In contrast, 
weight has a non-significant effect on THg (p > 0.05). This 
size-dependent Hg accumulation is likely influenced by various bio
kinetic parameters, such as dietary assimilation efficiency, growth rate, 

Fig. 3. Distributions of Hg levels (THg, μg/kg wet weight) in marine organisms from (a) the pelagic food web and (b) the benthic food web of Rayong Bay. Levels of 
500 and 1000 μg/kg indicate the upper permissible level for Hg in seafood and top predators, respectively (MPH, 2020).
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and efflux rate (Dang and Wang, 2012). Furthermore, the model shares 
the random effect revealed significant difference among species (p <
0.05), suggesting that species-specific factors are important de
terminants of Hg accumulation in marine animals, in addition to total 
length and weight.

In the pelagic food web (Fig. 3a), THg increased progressively from 
fish larvae (0.45 ± 0.16 μg/kg) to zooplankton (0.72 ± 0.19 μg/kg), 
phytoplankton (2.00 ± 1.25 μg/kg), and then to cephalopods (24.2 ±
17.3 μg/kg) and to fishes (61.9 ± 168 μg/kg). The Kruskal-Wallis test 
revealed that fish larvae, zooplankton, and phytoplankton have signif
icantly lower THg than cephalopods and fishes (p < 0.001), while squids 
and fishes did not show any significant difference in THg (p = 0.153). 
Furthermore, there were no significant differences between fish larvae, 
zooplankton, and phytoplankton (p > 0.05). Similarly, the benthic food 
web (Fig. 3b) shows increasing THg levels from bivalves (8.17 ± 3.39 
μg/kg) to shrimp (24.7 ± 2.21 μg/kg), gastropods (38.4 ± 17.8 μg/kg), 
cephalopods (45.5 ± 14.7 μg/kg), crabs (70.1 ± 28.9 μg/kg), and finally 
fishes (134 ± 200 μg/kg). ANOVA revealed that bivalves have signifi
cantly lower THg than cephalopods, crabs, and fishes (p < 0.001), while 
cephalopods, crabs, and fishes did not show any significant difference in 
THg (p > 0.05). Furthermore, there were no significant differences be
tween bivalves, gastropods, and shrimps (p > 0.05). These results indi
cate a potential for Hg biomagnification within certain marine food 
webs, particularly within fish populations. Considering the significant 
role of fish in the Thai diet, this finding emphasizes the critical need for 
continued monitoring of Hg levels in seafood to ensure consumer safety 
(Prabakaran et al., 2024, 2025; Ritonga et al., 2022; Windom and 
Cranmer, 1998).

3.2.1. Hg accumulation at the base of the food web
Hg in aquatic ecosystems are influenced by various factors, including 

trophic status and plankton density. The extent of biomagnification can 
vary depending on specific ecosystem characteristics. Indeed, phyto
plankton generally accumulates lower Hg than other groups marine 
organisms (Wu and Wang, 2014). As zooplankton consume phyto
plankton, it concentrates the Hg in their bodies (Watras and Bloom, 
1992). This biomagnification continues at higher TLs, such as fish 
consuming zooplankton, leading to higher Hg in each successive TL 
(Morel et al., 1998). In some cases, higher plankton densities (i.e., 
during bloom events) are associated with lower Hg in phytoplankton, 
zooplankton, and fish (Chen and Folt, 2005). This phenomenon is called 
biodilution (Sun et al., 2020).

It is surprising that THg in fish larvae, zooplankton, and phyto
plankton from this study are not significantly different (Fig. 3a) possibly 
through several plausible mechanisms. Firstly, small phytoplankton 
have high surface area-to-volume ratios, and subsequently high Hg up
take efficiencies, contributing to the relatively high concentrations 
(Fisher, 1985; Lee and Fisher, 2016; Wu et al., 2020), consistent with 
Koski (2024) who reported the lowest THg was observed in the >200 μm 
size fraction (18 ± 3.51 μg/kg) and the highest concentration in the size 
fraction of 50 – 200 μm (25.5 ± 3.7 μg/kg). Furthermore, Tesán-Onrubia 
et al. (2023) also found higher THg in phytoplankton (0.7 – 20 μm in 
size) than in the zooplankton of size classes from 60 to 200 to >2000 μm 
in size. Secondly, in quickly expanding populations, growth rates may 
outpace rates of metal uptake leading to lower mass-specific Hg con
centrations at high biomass, known as growth dilution (Sunda and 
Huntsman, 1998).

In eutrophic and hypereutrophic systems, Hg uptake by phyto
plankton tends to be lower, and trophic magnification factors are 
reduced compared to less productive lakes (Poste et al., 2015) as a result 
of biodilution as discussed above. On the other hand, oligotrophy likely 
drives the higher Hg bioaccumulation in the food web (Chouvelon et al., 
2018). Other factors such as dissolved organic carbon (DOC) and 
plankton community composition can affect Hg bioaccumulation (Long 
et al., 2018). Coastal and offshore waters differ in their DOC and 
composition. Taki and Suzuki (2001) posited that offshore waters of the 

subtropical and equatorial Pacific typically have lower DOC concen
trations and this DOC pool is more biologically derived and less 
degraded DOC compared to coastal and shelf environments. This dif
ference likely leads to weaker binding of Hg and MeHg in these waters 
compared to terrestrial-derived and humic-rich organic matter, thereby 
increasing Hg bioavailability to plankton (Gosnell and Mason, 2015). 
Understanding these complex interactions is crucial for predicting Hg 
concentrations in aquatic food webs and assessing potential risks to 
higher TL organisms, including humans.

THg in primary producers (i.e., phytoplankton) provides crucial in
sights into how much Hg enters the food web. Here we compiled THg 
concentration in plankton from this study and those from other regions 
(Table 1). Although regional variations in Hg levels exist, we need to 
recognize that different size classes and analytical techniques for Hg 
may indeed prevent a direct comparison. We attempted to convert all 
different reported units to μg/kg and found samples in our study had 
lower THg than most other studies.

3.2.2. Hg in fish and shellfish
Both invertebrate and fish species in the pelagic food web from this 

study have average THg concentrations (49.3 ± 139 μg/kg) that were 

Table 1 
Compiled THg concentrations (μg/kg wet weight) in plankton by size fractions.

Location Size (μm) THg Reference

East Coast of 
Thailand

N/A 0.1 Cheevaporn et al. 
(2000)

Guanabara Bay 70–290 0.80–2.01 Kehrig et al. (2009)
≥290 4.01–18.05

Northwest Atlantic 
Ocean

0.2–200 1.41–15.24 Hammerschmidt 
et al. (2013)200–500 0.90–10.83

500–1000 1.36–13.84
1000–2000 1.22–12.44
>2000 1.32–6.82

Ilha Grande Bay 25 0.15a ± 0.02a Seixas et al. (2014)
Ilha Grande Bay 1.2–70 1.25a ± 0.60a Seixas et al. (2015)

70–290 0.15a ± 0.06a

290–500 0.66b ± 0.41b

≥500 0.88b ± 0.57b

Central Pacific 
Ocean

<5 0.26–6.30 Gosnell and Mason 
(2015)5–20 4.07–166.49

>20 11.63–288.25
200–500, 
500–1000, 
1000–2000, and 
>2000

1.00–27.08

Long Island Sound 0.2–5, 5–20, and 
20–200

<0.30 Gosnell et al. (2017)

Southern Baltic 
Sea

>50 3.3a,c– 3.9a,c Bełdowska and 
Mudrak-Cegiołka 
(2017)

Mediterranean Sea 0.7–2.7 4.30a ± 1.55a Tesán-Onrubia et al. 
(2023)2.7–20 2.10a ± 1.35a

60–200 1.10a ± 0.50a

200–500 2.4b ± 0.7b

500–1000 2.6b ± 0.1b

1000–2000 4.5b ± 4.4b

>2000 2.1b ± 1.8b

Danshuei Estuary, 
northern 
Taiwan.

35–75 10.0a – 207.5a Fang and Chang 
(2024)75–125 5.5a – 381.0a

125–212 7.5a – 535.0a

>212 9.0b–1040.0b

Rayong Bay, 
Thailand

20–100 2.00 ± 1.25 This study
>100 0.72 ± 0.19
>300 0.45 ± 0.16

Note.
a Calculated from 95 % water content for microseston (size class of 0.2–200 

μm: bacteria, phytoplankton, microzooplankton, and suspended particulate 
organic matter) as suggested by Hammerschmidt et al. (2013).

b Calculated from 90 % water content in zooplankton larger than 200 μm 
based on Knauer and Martin (1972).

c Median values.
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approximately half of those found in the benthic food web (113 ± 84.0 
μg/kg), similar to the findings reported by Le Croizier et al. (2019)
conducted in fish residing in tropical water along the Senegalese coast of 
West Africa and Hilgendag et al. (2022) conducted in Arctic marine food 
webs of Frobisher Bay in Canada. Additionally, pelagic fish collected 
were lower in THg than benthic, bottom-feeding fish, which exhibited 
the highest THg of all fish species collected. This is consistent with other 
previous work in the nearby areas such as the Lower GOT (Windom and 
Cranmer, 1998) and GOT (Prabakaran et al., 2024). Furthermore, 
pelagic fish collected in the Upper GOT were reported to have approx
imately half of those found in the THg concentrations than demersal fish 
(Chongprasith and Wilairatanadilok, 1999).

Several factors such as feeding habits and methylation may 
contribute to the lower THg levels in the pelagic food web compared to 
the benthic food web. Benthic organisms, such as bivalves and crusta
ceans, often exhibit more diverse diets and feeding strategies than 
pelagic organisms (Hilgendag et al., 2022; McMeans et al., 2013; 
Renaud et al., 2011). This diversity in diets and feeding strategies affects 
how much Hg organisms can accumulate. Many bottom-dwelling in
vertebrates, such as bivalves and crustaceans, can absorb Hg in two 
ways: via food ingestion and via seawater through their gills (Gagnon 
and Fisher, 1997; Gray, 2002; Pan and Wang, 2011). In the case of fish, 
the former pathway accounts for most Hg intake (Murillo-Cisneros et al., 
2019).

Another factor is methylation that is more prevalent in benthic en
vironments especially in anoxic sediments compared to the water col
umn (Compeau and Bartha, 1985; Merritt and Amirbahman, 2009), 
suggesting that the base of the benthic food web may be more enriched 
in MeHg relative to the pelagic food web. In addition, differences in 
seawater conditions between pelagic and benthic environments may 
lead to varying Hg exposure for different marine organisms. Indeed, the 
different chemical and physical conditions between pelagic and benthic 
environments lead to variations in Hg exposure, particularly in its most 
readily absorbed form, MeHg (Hilgendag et al., 2022). In 
oxygen-depleted zones of pelagic environments, MeHg formation is 
believed to be driven by the heterotrophic organic matter reminerali
zation (Bowman et al., 2016; Kim et al., 2017) stemming from the 
growth of phytoplankton (primary production) associated with subsur
face chlorophyll maxima (Bowman et al., 2015; Bratkič et al., 2016; 
Wang et al., 2022).

Both oxidized and reduced sediments have the capacity to retain Hg. 
However, changes in redox conditions within the bottom water and 
upper sediment layers can trigger the release of Hg species into the water 
column. Conditions such as eutrophication or limited vertical mixing 
promote reducing environments, which enhance the formation of MeHg 
in sediments, with periodic releases into the water column (Pakhomova 
et al., 2018). Conversely, the oxygenation of previously anoxic waters 
can also result in the mobilization of Hg species into the water, 
increasing their bioavailability and potential uptake by organisms, 
thereby introducing Hg into the food web (Pakhomova et al., 2018). 
Throughout the study period, the area under investigation experienced 
no hypoxia in the water column. Therefore, any MeHg entering the base 
of the pelagic food web might originate from the underlying sediments 
or perhaps in the settling particles (e.g., Monperrus et al., 2007; Sun
derland et al., 2009).

In benthic environments, bottom-dwelling organisms (i.e., benthic 
biota) experience variable MeHg exposure. The types of microbes pre
sent in the sediments can influence MeHg production while the amount 
of organic matter can act as a chelating agent of MeHg, thus reducing its 
bioavailability for organisms (Lawrence and Mason, 2001; Tomczyk 
et al., 2018). The wider range of THg observed in benthic food webs 
compared to pelagic one’s stems from three key factors. Firstly, 
bottom-dwelling organisms have more diverse food sources, potentially 
leading to a broader range of Hg exposure. Secondly, they likely have 
unique mechanisms for accumulating and eliminating Hg compared to 
open water organisms. Finally, the varied seawater chemistry conditions 

experienced by bottom-dwellers throughout their habitat can contribute 
to more variable Hg exposure.

Most THg in the studied invertebrates and fish species (n = 315, 
Table S2) fell below the guideline levels established by international 
organizations (e.g., EC, 2023; UNEP, 2002) and national regulations (e. 
g., Bugang and Woolsey, 2010; Canada, 2007; FSANZ, 2024; Jinadasa 
et al., 2021; MPH, 2020) (500 μg/kg wet weight). However, some ex
ceptions were found in some fish species. In the pelagic food web (n =
96), one pickhandle barracuda (Sphyraena jello, SJE; n = 1) exceeded the 
limit. Similarly, the benthic food web (n = 246) contained 10 samples 
(five species) that surpassed the guideline levels: lattice monocle bream 
(Scolopsis taenioptera, STA; n = 1), large scaled terapon (Terapon theraps, 
TT; n = 5), jarbua terapon (Terapon jarbua, TJ, n = 1), butterfly whiptail 
(Pentapodus setosus, PS; n = 1), and Hasselt’s bambooshark (Chiloscyllium 
hasseltii, CH; n = 2). These species exceeding the guideline levels are 
thought to occupy higher or intermediate TLs compared to most or
ganisms in this study based on the δ15N values (Tabel S2).

The highest THg in the pelagic food web was found in pickhandle 
barracuda (Sphyraena jello, SJE), a fast-swimming and long-lived 
carnivorous fish, with high energy demands due to its active lifestyle 
(Dananjanie et al., 2009; Hajisamae et al., 2003). Its high consumption 
rate makes it more susceptible to accumulating pollutants like Hg in its 
organs and tissues (e.g., Ritonga et al., 2023). In this study, the average 
THg in SJE is 595 ± 576 μg/kg, higher than those reported in Port 
Moresby (61 μg/kg) (Sorentino, 1979) and the artisanal fisheries of 
Seychelles (360 ± 31 μg/kg) (Robinson and Shroff, 2020). Several pre
vious studies showed a strong correlation between SJE length and Hg 
concentration (e.g., Saei-Dehkordi et al., 2010; Shalini et al., 2021). 
These studies highlight regional variations in Hg concentrations and the 
potential for bioaccumulation in larger predatory fish species. Also, it is 
important to note that the two SJE in this study had drastically different 
lengths (i.e., 12.8 vs 59.0 cm) resulting in varying THg therein (i.e., 18.3 
vs 1171 μg/kg). The regional variations in Hg concentrations observed 
in SJE emphasize the need for targeted monitoring and management 
strategies to protect human health and marine ecosystems from Hg 
contamination. By understanding the factors driving Hg accumulation in 
SJE, we can develop effective measures to reduce Hg exposure and 
mitigate its negative impacts.

In contrast, the benthic food web shows the highest THg in Hasselt’s 
bambooshark (Chiloscyllium hasseltii, CH) at 708 ± 318 μg/kg, followed 
by jarbua terapon (Terapon jarbua, TJ, 663 ± 523 μg/kg) and large 
scaled terapon (Terapon theraps, TT, 470 ± 370 μg/kg). Terapon spp., 
typically found in Indo-West Pacific coastal waters, brackish areas, and 
even freshwater, have higher THg and exhibit interesting life stages. 
Adults prefer the near-shore environment, while juveniles hitch rides on 
floating weeds, venturing far out to sea (Lim, 2015; Russell and Houston, 
1989). Their omnivorous diet includes invertebrates, algae, decompos
ing matter, and also small fish (Nagarani and Kumaraguru, 2012). They 
are not only nutritious for human consumption but also serve as valu
able indicators of environmental contamination of Hg (e.g., Nagarani 
et al., 2011). In this study, the average concentration of THg in TT and 
TJ is lower than the Terapon spp. In the GOT (1050 ± 721 μg/kg) 
(Prabakaran et al., 2024). The THg in TT was lower than that reported 
for Buru Island (970 μg/kg) (Reichelt-Brushett et al., 2017). Conversely, 
the concentration in TJ was higher than those reported for Dapeng Bay 
(48.4 ± 18.3 μg/kg) (Pan et al., 2014), the South China Sea (417 μg/kg) 
(Liu et al., 2014), and the Talawaan watershed, Indonesia (175 μg/kg) 
(Kaunang et al., 2018).

This study highlights that some predatory fish (i.e., Sphyraena jello 
sp. and Chiloscyllium hasseltii) and some demersal fish (Terapon spp.) 
tend to accumulate higher levels of Hg due to their higher position in the 
food web. As a result, it is recommended to limit the consumption of fish 
occupying high TLs. To effectively mitigate the potential health impacts 
of Hg on humans, further research on its uptake and depuration mech
anisms is essential. This knowledge could be used to create targeted 
guidance, such as recommendations on which fish species, age groups, 
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or body parts to avoid consuming, and even contribute to the develop
ment of safer food practices.

3.3. Prey-predator dynamics impact on THg biomagnification

Over 46 % of BMFnorm values in the pelagic food web (Fig. S1) and 
over 40 % in the benthic food web exceeded 1.0 (Fig. S2), indicating Hg 
biomagnification (Borgå et al., 2012; Vainio et al., 2022). The pelagic 
food web exhibited a BMFnorm range of 1.015 to 1285 (28.2 ± 19.6), 
while the benthic food web ranged from 1.001 to 476 (13.9 ± 32.9). 
Equation (3) considers a TLs to account for differences in how THg ac
cumulates at different TLs. In some cases, however, BMFnorm values can 
be lower than one or even negative (shown as white boxes in Figs. S1 and 
S2). This is due to the predator’s TL values being lower than those of its 
supposed prey (e.g., Vainio et al., 2022).

In the pelagic food web (Fig. S1), the three barracuda species, 
including the Sphyraena jello (SJE) exhibits the highest BMFnorm values, 
indicating the greatest Hg accumulation from prey (BMFnorm = 188 ±
30.4, range: 12.7 to 1285), followed by the Sphyraena putnamae (SP) 
(BMFnorm = 27.3 ± 48.9, range: 1.0 to 243) and the Sphyraena obtusata 
(SOC) (BMFnorm = 14.2 ± 27.1, range: 1.8 to 135). Given this, SJE is 
likely a top predator within this pelagic food web, while SP and SOC may 
occupy upper TLs. Similarly, in the benthic food web (Fig. S2), the 
Chiloscyllium hasseltii (CH) demonstrates the highest BMFnorm values, 
implying the most substantial Hg uptake from prey (BMFnorm = 68.8 ±
82, range: 7.6 to 364), with the Terapon jarbua (TJ) (BMFnorm = 40.4 ±
73.7, range: 2.9 to 476) and the Terapon theraps (TT) (BMFnorm = 26.8 ±
22.2, range: 4.2 to 87.7) following. The range of BMFnorm values in 
marine organisms in this study is higher than those reported by Vainio 
et al. (2022) for homeotherms (BMFs = 4.40 to 508) and poikilotherms 
(BMFs = 0.44 to 33.5), as well as for pelagic predators (BMFs = 1.61 to 
9.35) and benthic predators (BMFs = 0.44 to 30.9) in the Archipelago 
Sea a Baltic Sea basin at the southwestern coast of Finland. This 
discrepancy could be attributed to variations in ecosystem characteris
tics. GOT might represent a different marine environment with distinct 
food web structures and prey composition compared to the Baltic Sea. 
Additionally, environmental factors like salinity, seawater temperature, 
organic matter content, and sediment characteristics can all influence 
Hg bioavailability and bioaccumulation in organisms (Bradford et al., 
2024; Lawrence and Mason, 2001). Together, these factors likely 
contribute to the observed differences in BMF and BMFnorm values.

While the BMF and BMFnorm values provide insights into how 
contaminant concentrations increase up the food web, they have limi
tations particularly because they do not account for the variations 
observed in real-world ecosystems. Different species have unique food 
source and body temperature regulation strategy. Both of which can 
significantly influence the contaminant accumulation, making BMF and 
BMFnorm values less precise for some organisms (Vainio et al., 2022; Van 
den Brink et al., 2013). To improve our understanding of contaminant 
movement in food webs, models that incorporate these ecological and 
physiological differences are needed.

3.4. THg biomagnification in pelagic vs benthic food webs

Trophic indicators (BMFnorm, TMS, and TMF) can be used to explore 
the dynamics of THg in the Rayong Bay tropical food web. The BMFnorm 
values characterize the increase in contaminant concentration between 
adjacent TLs, while the TMF values represent the average BMFnorm 
across multiple TLs, potentially encompassing the entire food web 
(Franklin, 2016).

Varying degrees of THg biomagnification were observed in different 
habitats. Our GLMM analysis revealed a significant positive relationship 
between TLs and THg concentrations with a fixed effect coefficient of 
0.352 (p < 0.05). This result indicates that organisms at higher TLs tend 
to accumulate greater Hg. The TMF values of 6.68 for the pelagic food 
web and 2.06 for the benthic food web further support this trend, 

demonstrating that THg biomagnifies more effectively in the pelagic 
food web (TMS = 0.83, Fig. 4a) compared to the benthic food web (TMS 
= 0.31, Fig. 4b). This highlights the significance of investigating THg 
pathways in various environmental environments. Consistent with 
previous findings that pelagic food webs generally exhibiting higher 
biomagnification rates than benthic food webs (e.g., Hilgendag et al., 
2022; Vainio et al., 2022), our study confirms that THg biomagnification 
occurs in both Rayong Bay food webs, with greater TMF and TMS values 
indicating higher levels of Hg biomagnification. Consequently, con
sumers at higher TLs are more likely to accumulate significant amounts 
of Hg, posing a risk to human health (Scheuhammer et al., 2007).

Both pelagic and benthic food webs with TMF values exceeding 1.0 
indicate that THg entered organisms at the base of the food web and 
biomagnified through trophic transfers. Our TMF values align with 
previous studies, which reported higher TMFs in the pelagic food web 
compared to the benthic one in the Gulf of St. Lawrence, Canada (Lavoie 
et al., 2010), the Archipelago Sea (Vainio et al., 2022) and Frobisher Bay 
(Hilgendag et al., 2022) (Table 2). The biomagnification of the same 
contaminant differs among food webs, influenced by the unique char
acteristics of each web (Wang et al., 2021). The distinct TMF values 
observed in both food webs could be linked to differences in THg 
bioavailability (Bisi et al., 2012). In fact, simpler food webs in our study, 
such as the pelagic system, appeared to rely on fewer carbon sources and 
exhibited higher rates of Hg biomagnification consistent with other 
previous studies (e.g., Hilgendag et al., 2022; Muto et al., 2014). 
Notably, the factors driving Hg biomagnification in marine food webs 
appear consistent across diverse environments, from polar to temperate 
to tropical regions (Campbell et al., 2005; Lavoie et al., 2013).

A comprehensive overview of TMF values, calculated by taking the 
antilogarithm of the slope (Log10THg vs δ15N/Log10THg vs TL) from the 
estimated regression with base 10, for Hg across various marine food 
webs globally is presented (Table 2). TMF values exhibit even greater 
variability, ranging from 1.10 to 13.39, highlighting significant differ
ences in TMF values across marine food webs. This variability is further 
evidenced by discrepancies between our findings and those of previous 
studies, some of which involved seabirds (e.g., Jæger et al., 2009; Lavoie 
et al., 2010; Ruus et al., 2015). These discrepancies may primarily arise 
from variations in the quantity of Hg entering the base of the food web 
(Thera and Rumbold, 2014), as well as differences in the structure and 
complexity of the food web. Geographical differences can also influence 
the quantity of bioavailable Hg generated (Murillo-Cisneros et al., 
2019). However, trophic contaminant dynamics within food webs are 
specific to each system due to variations in the physiochemical char
acteristics of the environment and instance and the intrinsic variety in 
the contamination pathways that arise (Vainio et al., 2022). Our findings 
highlight the critical importance of examining variations in the trophic 
transmission of Hg along distinct food web pathways to gain a deeper 
comprehension of contaminants dynamics.

4. Conclusion

This study integrated food web structure analysis with bio
magnification estimations to explore dietary Hg pathways in the marine 
environment of Rayong Bay, a relatively unexplored area within the 
GOT. To our knowledge, this is the first investigation into THg bio
magnification in Thai waters. Our results revealed a significant positive 
relationship between THg and total length and TLs in marine animals. 
This relationship indicates that THg levels increase as organisms ascend 
the food web. Larger predators, including fish such as Sphyraena sp., 
Chiloscyllium sp., and certain demersal fish (Terapon spp.), exhibit 
significantly higher concentrations than smaller organisms. Although 
most THg levels were well below established safety guidelines, the 
presence of biomagnification warrants further exploration.

This research utilized three trophic indicators (BMFnorm, TMS, and 
TMF) to assess THg movements within the food webs in Rayong Bay. 
Over 40 % of the BMFnorm values in the pelagic and benthic food webs 
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exceed one, indicating that THg increase as organisms moves up the food 
web in these ecosystems. Additionally, the TMF values show that THg 
biomagnifies more effectively in the pelagic food web than in the 
benthic food web in Rayong Bay. This finding aligns with the compari
son of food web structure and computed biomagnification values (TMFs 
and TMSs) between the two food webs.

Overall, the findings emphasize the occurrence of Hg bio
magnification in Rayong Bay. While plankton exhibits minimal enrich
ment, predators at higher TLs accumulate substantial amounts of Hg. 
The higher biomagnification in the pelagic system also necessitates 
further investigation into the specific factors driving this pattern.
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Table 2 
Compiled previously published trophic magnification slopes (TMSs) and trophic magnification factors (TMFs) of Hg.

Location Food web Samples Data analysis TEF TMSs TMFs Reference

Mekong Delta, South Vietnam Not specified Phytoplankton − Fishes Log10THg vs δ15N – 0.114 1.30 Ikemoto et al. (2008)
Kongsfjorden, Svalbard Pelagic Seabirds Log10THg vs TLs 3.4 0.14 3.02 Jæger et al. (2009)

Pelagic Fishes — seabirds NA 4.87
Baltic Sea Pelagic Phytoplankton — fishes Log10THg vs δ15N 3.5 0.175 1.50 Nfon et al. (2009)
Gulf of St. Lawrence Pelagic Zooplankton — seabirds Log10THg vs TLs 3.4 0.697 4.98 Lavoie et al. (2010)

Benthopelagic Invertebrates — seabirds 0.649 4.46
Benthic Invertebrates — fishes 0.416 2.60

Sepetiba Bay, Norway Not specified Invertebrates — fishes Log10THg vs δ15N – NA 1.71–1.91 Bisi et al. (2012)
Guanabara Bay, Norway NA 1.51–1.55
Ilha Grande Bay, Norway NA 1.63–1.67
Hudson Bay, Canada Not specified Zooplankton Log10THg vs δ15N 3.8 NA 1.1–1.9 Foster et al. (2012)
Northern Rio de Janeiro State, southeastern Brazil Not specified Phytoplankton — fishes Log10THg vs TLs 3.4 0.835 6.84 Di Beneditto et al. (2012)
Southeastern Australia Whole community Zooplankton — fishes Log10THg vs TLs 3.4 1.13 13.39 Pethybridge et al. (2012)

Benthic Fishes 0.89 7.70
Nain Bay, Canada Not specified Algae (Fucus sp.) — fishes Log10THg vs TLs 3.4 0.37 ± 0.06 2.35 van der Velden et al. (2013)
Okak Bay, Canada Algae (Fucus sp.) — fishes 0.37 ± 0.06 2.33
Saglek Bay, Canada Algae (Fucus sp.) — fishes 0.20 ± 0.05 1.59
Dry Bay, Canada Algae (Fucus sp.) — fishes 0.22 ± 0.04 1.65
Iqaluit, Canada Plankton — fishes 0.44 ± 0.03 2.77
Pond Inlet, Canada Algae (Fucus sp.) — fishes 0.45 ± 0.03 2.82
Southwest Florida, USA Not specified Invertebrates — fishes Log10THg vs TLs 3.4 ​ 5.05 Thera and Rumbold (2014)
Santo shelf, São Paulo, Brazil Pelagic Zooplankton − Fishes Log10THg vs δ15N – 0.26 1.82 Muto et al. (2014)

Benthic Bivalves − Fishes 0.13 1.35 ​
Nasaruvaalik Island, Nunavut, Canada Not specified C. hyperboreus — fishes Log10THg vs TLs 3.8 0.036 1.37 Clayden et al. (2015)

C. hyperboreus — seabirds 0.095 2.13
Kongsfjorden, Svalbard, Norwegian Arctic Pelagic Zooplankton — seabirds Log10THg vs TLs 3.8 NA 8.8 Ruus et al. (2015)

Zooplankton — seabirds (without krill) NA 8.7
East coast of Peninsula, Malaysia Not specified Sediment — fishes Log10THg vs δ15N 2.2* 

3.4**
0.163 1.5 Le et al. (2017)

Chukchi Sea Not specified Phytoplankton — whelk Log10THg vs TLs 3.4 0.05 1.5 Fox et al. (2017)
​ ​ ​ Log10MMHg vs TLs 3.4 0.15 3.2 ​
Bahia Tortugas, Mexico Benthic Zooplankton — fishes Log10THg vs TLs 3.4 0.8051 6.38 Murillo-Cisneros et al. (2019)
Laizhou Bay, China Not specified Phytoplankton — fishes Log10THg vs TLs 3.4 0.23 1.69 Cao et al. (2020)
Frobisher Bay Pelagic Zooplankton — fishes Log10MeHg vs δ15N – 0.183 1.52 Hilgendag et al. (2022)

Benthopelagic Invertebrates — fishes 0.201 1.59
Benthic Invertebrates — fishes 0.079 1.20

Archipelago Sea Pelagic Zooplankton — fishes Log10THg vs TLs 3.4 0.55–0.60 3.58–4.02 Vainio et al. (2022)
Benthic Bivalves — fishes 0.32–0.37 2.11–2.34

Gulf of Ulloa, Mexico Not specified Zooplankton — fishes Log10THg vs TLs 3.4 NA 3.4 Pantoja-Echevarría et al. (2023)
Yanpu Bay, China Not specified POM — fishes Log10THg vs δ15N – NA 1.42 Hu et al. (2024)
Lower Cape Fear River and the Pamlico Sound Not specified Sediment — seabirds Log10THg vs δ15N 3.4 NA 2.96–3.92 Hardy et al. (2024)
Haizhou Bay, China Not specified Gastropods — fishes Log10THg vs TLs 3.4 NA 1.64 Chen et al. (2024)
Rayong Bay, Thailand Pelagic Phytoplankton — fishes Log10THg vs TLs 3.4 0.83 6.68 This study

Benthic Bivalves — fishes 0.31 2.06

Note: TEF stands for trophic enrichment factor. Le et al. (2017)’s TEF values *for invertebrates and ** for fishes. Meanwhile, POM stands for particulate organic matter, and NA is not available.
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Verplancken, F.R., Tripp-Valdéz, A., Tamburin, E., Lara, A., Jonathan, M.P., 
Sujitha, S.B., Delgado-Huertas, A., Arreola-Mendoza, L., 2023. Trophic structure and 
biomagnification of cadmium, mercury and selenium in brown smooth hound shark 
(Mustelus henlei) within a trophic web. Food Webs 34, e00263. https://doi.org/ 
10.1016/j.fooweb.2022.e00263.

Parker, P.L., 1964. The biogeochemistry of the stable isotopes of carbon in a marine bay. 
Geochem. Cosmochim. Acta 28 (7), 1155–1164. https://doi.org/10.1016/0016- 
7037(64)90067-5.

Peterson, B.J., Fry, B., 1987. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Evol. 
Systemat. 18, 293–320. https://doi.org/10.1146/annurev.es.18.110187.001453, 
18, 1987. 

Pethybridge, H., Butler, E.C.V., Cossa, D., Daley, R., Boudou, A., 2012. Trophic structure 
and biomagnification of mercury in an assemblage of deepwater chondrichthyans 
from southeastern Australia. Mar. Ecol. Prog. Ser. 451, 163–174. https://www.in 
t-res.com/abstracts/meps/v451/p163-174/.

Phaksopa, J., Sukhsangchan, R., Keawsang, R., Tanapivattanakul, K., 
Thamrongnawasawat, T., Worachananant, S., Sreesamran, P., 2021. Presence and 

characterization of microplastics in coastal fish around the eastern coast of Thailand. 
Sustainability 13 (23), 13110. https://doi.org/10.3390/su132313110.

Pham, T.T.B., Junpen, A., Garivait, S., 2015. An investigation of atmospheric mercury 
from power sector in Thailand. Atmosphere 6 (4), 490–502. https://doi.org/ 
10.3390/atmos6040490.

Pojtanabuntoeng, T., Saiwan, C., Sutthiruangwong, S., Gallup, D.L., 2011. Effect of 
mercury on corrosion in production wells in Gulf of Thailand. Corrosion Eng. Sci. 
Technol. 46 (4), 547–553. https://doi.org/10.1179/147842209X12579401586609.

Post, D.M., 2002. Using stable isotopes to estimate trophic position: models, methods, 
and assumptions. Ecology 83 (3), 703–718. https://doi.org/10.1890/0012-9658 
(2002)083[0703:USITET]2.0.CO;2.

Poste, A.E., Muir, D.C.G., Guildford, S.J., Hecky, R.E., 2015. Bioaccumulation and 
biomagnification of mercury in African lakes: the importance of trophic status. Sci. 
Total Environ. 506–507, 126–136. https://doi.org/10.1016/j. 
scitotenv.2014.10.094.

Prabakaran, K., Charoenpong, C., Bureekul, S., Wang, X., Sompongchaiyakul, P., 2025. 
Heavy metal contamination in marine fish from the Andaman sea: influence of 
habitat and health risk assessment. Mar. Pollut. Bull. 210, 117299. https://doi.org/ 
10.1016/j.marpolbul.2024.117299.

Prabakaran, K., Sompongchaiyakul, P., Bureekul, S., Wang, X., Charoenpong, C., 2024. 
Heavy metal bioaccumulation and risk assessment in fishery resources from the Gulf 
of Thailand. Mar. Pollut. Bull. 198, 115864. https://doi.org/10.1016/j. 
marpolbul.2023.115864.
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