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Abstract: Habitat degradation induced by human activities can exacerbate the spread of wildlife disease and

could hinder the recovery of imperiled species. The endangered green turtle Chelonia mydas is impacted

worldwide by fibropapillomatosis (FP), a neoplastic infectious disease likely triggered by the Scutavirus che-

lonidalpha5 with coastal anthropogenic stressors acting as cofactors in disease development. Here, we studied

fibropapillomatosis dynamics and its demographic consequences using an 11-year capture-mark-recapture

dataset in Anse du Bourg d’Arlet/Chaudière (ABAC) and Grande Anse d’Arlet (GA), two juvenile green turtle

foraging grounds in Martinique, French West Indies. Afflicted turtles had similar mortality and permanent

emigration rates to the non-afflicted ones. Fibropapillomatosis was commonly observed in large individuals

and disease recovery may take several years. Consequently, permanent emigration before full recovery from the

disease is suspected and might affect the developmental migration success. Additionally, the results revealed

that the FP had higher prevalence and severity, and progressed two times faster in ABAC than in GA despite the

proximity (< 2 km) and the similarity of the two foraging grounds. The reasons for these differences remain

unidentified. Locally, further studies should be focused on the determination of the external and internal

cofactors related to the observed FP dynamics. Finally, the investigations should be extended at a global

regional scale to determine potential deleterious effect of the FP on the adult life-stage. These perspectives

improves upon our overall understanding on the interplay between wildlife diseases, hosts and environmental

factors.
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INTRODUCTION

The One Health approach considers the health of humans,

animals and their environment as interconnected (Xie et al.,

2017). Exotic species trade, intensive farming, habitat frag-

mentation and pollution increase the vulnerability of wildlife

species to emerging diseases (Daszak et al., 2000; Aguirre and

Tabor, 2008; Brearley et al., 2013; Pesavento et al., 2018),

which represent a major threat to both human health and the

conservation of biodiversity (Daszak et al., 2000). High mor-

tality rates arising from wildlife diseases can limit the recovery

of endangered species (Brand, 2013) as seen with Devil Facial

Tumor Disease (Lachish et al., 2007) or Chytridiomycosis in

amphibian populations (Scheele et al., 2019). In this context,

long-term monitoring is therefore essential as it is a key tool

for understanding disease dynamics and etiology in wild

populations (Barroso et al., 2021).

Fibropapillomatosis (FP) is a disease that affects all

seven sea turtle species globally (Jones et al., 2016). It has

reached panzootic status in the green turtle (Chelonia

mydas, Williams et al. 1994), classified as ‘‘Endangered’’ on

the IUCN Red List (Seminoff, 2004). Characterized typi-

cally by external tumors, FP primarily impacts juvenile

green turtles after they settle in coastal foraging grounds

(Jones et al., 2016). In the most severe cases, internal tu-

mors on the lungs, heart, kidneys, liver, or gastrointestinal

tract have been reported (Herbst, 1994). FP tumors can

notably impede movements and feeding activity and may

lead to mortality (Herbst, 1994). Moreover, several studies

have shown that FP-afflicted green turtles often have al-

tered blood biochemistry (Work et al. 2001; Hirama et al.

2014; Perrault et al. 2017, 2021; da Fonseca et al. 2020; Li

and Chang 2020). However, contrasting results have been

found related to the effects of FP on growth (negative

correlation: Chaloupka and Balazs, 2005; no relationship:

Kubis et al., 2009; Patrı́cio et al., 2014) and survival rates

(Patrı́cio et al., 2011; Hargrove et al., 2016).

The herpesvirus Scutavirus chelonidalpha5 (ChHV5) is

recognized as the primary etiological agent of FP (Herbst et al.,

1995). It can spread through direct contact between individ-

uals (Jones et al., 2020), viral shedding in the water column

(Work et al., 2014; Page-Karjian et al., 2015; Page-Karjian

et al., 2017; Farrell et al., 2021) or mechanical vectors (Lu et al.,

2000; Greenblatt et al., 2004). Nonetheless, the development of
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tumors also requires environmental and/or host factors

(Jones, 2004; Page-Karjian et al., 2012; Zamana et al., 2021).

Indeed, FP is often related to degraded seagrass beds, harmful

algal blooms, high sea surface temperature, salinity fluctua-

tions, eutrophication, and coastal water pollution (dos Santos

et al. 2010; Van Houtan et al. 2010; Perrault et al. 2017; Jones

et al. 2022; Manes et al. 2022; Roost et al. 2022; Oduor et al.

2024). Altered habitat quality may cause stress and

immunomodulation in green turtles, which could in turn

promote FP development (Sposato et al., 2021). FP prevalence

and severity can differ drastically between sites that are sepa-

rated by only few kilometers as reported in Martinique, French

West Indies. Here, the role of local eutrophication and de-

pleted seagrass beds is a suspected cofactor in FP tumor

development (Roost et al., 2022; Siegwalt et al., 2022).

Immatures green turtles in these areas show high fidelity to

their foraging grounds, where they remain several years

(Siegwalt et al., 2020). They aggregate in high densities on

native seagrass patches (Roost et al., 2022; Siegwalt et al.,

2022), and interact physically with conspecifics (Jeantet et al.,

2020). High levels of tourism in Martinique may also con-

tribute to pollution of local waters (Burac, 1996) and stress

through tourism-based activities (Landry and Taggart, 2010).

Environmental conditions and turtles’ behavior reported in

Martinique may lead turtles to chronic exposure to stressors

and may create conditions favorable to the spread and

development of FP (Jones et al., 2016; Dujon et al., 2021).

Considering the importance of the juvenile foraging

grounds in Martinique for the viability of the Atlantic green

turtle population (Chambault et al., 2018), investigating FP

dynamics is critical to assess its drivers and its impact on the

population demography (Fuentes et al., 2023). The aims of

this study, based on a 11 years capture-mark-recapture

(CMR) dataset of juvenile green turtles in Martinique, was to

(i) assess current FP prevalence estimation, (ii) provide FP

development and recovery rate estimations in relation to

potential environmental cofactors, (iii) assess FP effects on

survival and emigration rates, and (iv) characterize the

severity of the disease as the total area covered by tumors on

turtles’ body.

MATERIAL AND METHODS

Study Sites

The study took place in Les Anses d’Arlet (14�3009.6400N,

61�5011.8500W, Martinique, French West Indies) in three

sheltered bays: Grande Anse d’Arlet (GA), Anse du Bourg

d’Arlet and Anse Chaudière (Fig. 1). Due to the absence of

geographical barriers, the last two bays were considered

here as a single entity, referred to as Anse du Bourg d’Arlet/

Chaudière (ABAC). These bays are known as develop-

mental poaching- and predator-free foraging grounds for

immature green turtles affected by FP (Chambault et al.,

2018; Siegwalt et al., 2020, 2022; Lelong et al., 2024).

Data Collection

From 2013 to 2024, one-week capture-recapture sessions

were annually conducted in GA and ABAC, in combination

with multiple short irregular sessions (< 1 day) in GA

only (Fig. S1). Captured turtles were identified using Pas-

sive Integrated Transponder (PIT; ID-100, TROVAN). For

each individual, minimum curved carapace length (CCL)

was measured using flexible fiberglass tape (± 0.1 cm).

Complete capture, tagging and measurement procedures

are described in Bonola et al. (2019). Biopsies of skin, tu-

mor, blood, scale and claw were sampled.

A thorough external physical examination was per-

formed to locate each external tumor. Internal tumors

could not be detected, thus the present study concern only

cutaneous form of FP. High-angle photos of each tumor or

group of tumors were taken alongside a metal ruler,

occasionally between 2015 and 2021 and routinely since

2022. To prevent disease transmission among successively

manipulated individuals, latex gloves were changed be-

tween each turtle, and measurement tools and the boat

floor were sanitized immediately after each release.

Fibropapillomatosis Status and Total Tumor Area

We classified the FP status of each turtle as a binary vari-

able: ‘‘afflicted’’ when FP tumors were observed, or ‘‘non-

afflicted’’ otherwise. Several small tumors (< 0.5 cm) were

initially not considered as FP but were later identified based

on their progression, using available pictures of the same

animals over the years (e.g. Fig. S2). Subsequently, this

expertise has helped to identify small tumors even if no

other picture were available over the years. Consequently,

62 of the 455 turtles captured between 2013 and 2019,

initially classified as ‘‘non-afflicted’’ in Roost et al. (2022),

were reclassified as ‘‘afflicted’’ in the present study (25 in

ABAC, 37 in GA).

We assigned a specific ID to each tumor and recorded

its color, texture, shape, localization, and biopsies. Maxi-
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mum diameter and area were measured using Adobe

Photoshop 2020�. Similar to Rossi et al. (2016), the total

tumor area (TTA, cm2) was calculated for each afflicted

turtle to assess FP severity.

Statistical Analysis

Capture-Mark-Recapture Analysis

Similarly to Lelong et al. (2024), only captures that oc-

curred from June of year i to February of year i + 1 were

accounted and grouped in a yearly session for the year i,

resulting in a dataset covering the years 2013 to 2023. Only

the first capture of an individual was accounted in cases

where multiple captures occurred within the same year.

A multievent capture-recapture model (Pradel, 2005)

was set up based on seven states merging two size-classes

(Small/Medium juveniles CCL < 70 cm, SMJ; Large

juveniles CCL � 70 cm, LJ) and four health status (non-

afflicted, afflicted, recovered, dead; Fig. 2). Non-afflicted

corresponds to individuals that were initially captured with

no tumors, while recovered corresponds to complete

remission of tumors after earlier encounters, where the

turtle had FP tumors. Estimated parameters were the

transition probabilities between states: W the health tran-

sition (WDev the FP development rate and WRec the FP

recovery rate), U the apparent survival (i.e., probability of

surviving and staying in the study area) conditional on W,

and d the size-class transition rate of turtles, conditional on

W and U. It is important to note that U is a proxy of

survival for SMJ, since they are not expected to emigrate at

this life-stage class (Lelong et al., 2024). Moreover, W and d

are one-way transitions (Fig. 2). The following five possible

events were defined: ‘‘0’’ = not encountered, ‘‘1’’ = en-

countered without FP tumors and CCL < 70 cm,

‘‘2’’ = encountered with FP tumors and CCL < 70 cm,

‘‘3’’ = encountered without FP tumors and CCL � 70 cm,

‘‘4’’ = encountered with FP tumors and CCL � 70 cm.

Events where no external tumors were recorded could

correspond to non-afflicted or recovered states, dealing

with uncertainty in state assignment (Pradel, 2005). The

probability of being recaptured conditional to the state of

the individuals is noted p. Models were run using E-Surge

v2.2.3 (Choquet et al., 2009b).

Figure 1. Location of Martinique on the world map (red dot) and the two sampling sites in Martinique, Grande Anse d’Arlet and Anse du

Bourg d’Arlet/Chaudière (black dots) (Color figure online).
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Capture effort, expressed as the log-transformed half-

days of capture (logCE), years with high turbidity in coastal

water (2018 and 2020) and site differences are parameters

that affect recapture rates (Lelong et al., 2024) and were

included systematically in the models.

The effect of FP status on each transition probability

was tested through model selection procedure (see below).

Additionally, non-afflicted and recovered turtles were

grouped to create the variable FP2, used to control for

post-recovery effect of the disease on U and d transition

probabilities. Moreover, a third FP-related effect, called

FP3, was tested on ULJ and dSMJ excluding recovered

individuals. Indeed, recovery from FP may take several

years and is more prone to concern larger individuals

(Patrı́cio et al., 2016; Kelley et al., 2022), with potential

confounding effect on emigration and size-class transition

rates (Bjorndal et al., 2000; Lelong et al., 2024).

Considering their potential promoting effect on FP

disease (Manes et al., 2022; Roost et al., 2022), annual mean

values for Sea Surface Temperature Anomaly (SSTa, �C),

Net Primary Production (NPP, mgC.m-2) and salinity

(g.L-1) were extracted from NOAA ERDAPP database (h

ttps://coastwatch.pfeg.noaa.gov/erddap, accessed 18/06/

2024) and included in the model. Wastewater discharged

from a damaged outfall in ABAC between 2014 and 2019

was accounted as a binary variable at both sites, as it may

also have contaminated GA given the northward marine

currents in the area (Fig. S5). The possibility that the

wastewater leak did not affect GA was also tested in a

second model including this effect of pollution only in

ABAC. The role of these environmental covariates on FP

development and recovery rates were investigated using

Analysis of DEViance (ANODEV, Grosbois et al. 2008).

The most general model included FP status in addition

to site, logCE and turbidity effect on recapture rate, state-

specific apparent survival, time variation and site effect on

both FP development and recovery rates, and FP status on

size-class transition rate. From this general model, we used

a backward stepwise model selection procedure. Effects

were removed in the following order when present: time

Figure 2. Transition probability structure between the seven states of green sea turtles (Chelonia mydas) of the multi-event model set up on the

Martinique capture-mark-recapture dataset. Transitions to death or permanent emigration states are represented in red. Abbreviations: CCL,

minimum curved carapace length; FP, Fibropapillomatosis; Dev, FP development; Rec, FP recovery; N, Non-afflicted; A, Afflicted; R, Recovered

(Color figure online).
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variation, FP status and size-class. FP status was first re-

duced to FP2 then to FP3. Model selection was based on

QAICc (Burnham et al. 1995; Anderson et al. 1998). When

DQAICc > 2, the model with the lowest QAICc was kept.

Otherwise, the model with the lowest number of parame-

ters was retained. Goodness-of-Fit (GoF) was assessed on

the most general model using the Jolly-Movement (JMV)

test implemented in U-CARE v3.3 (Choquet et al., 2009a).

Following CMR model selection, the mean time spent

on the foraging grounds after settlement before the first FP

clinical signs, and the mean time required to recover from

FP were estimated according to Schaub et al. (2001) using

mean FP development and recovery rates over the study

duration from the best model. Associated standard errors

were calculated using the delta-method (Powell, 2007).

Additionally, the mean size at first capture in the different

FP status was compared between sites using a Mann–

Whitney U test.

Fibropapillomatosis Probability

Effect of site, year and CCL, including year*site and

year*CCL interactions on FP probability were tested using a

Binomial Generalized Linear Mixed Model with logit link

function using the package glmmTMB (Brooks et al., 2017)

in R v4.3.0 (R Core Team, 2023). Moreover, FP probability

may have a non-linear relationship on logit scale with years

and CCL (Patrı́cio et al. 2016; Kelley et al. 2022; Muñoz

Tenerı́a et al. 2022; Roost et al. 2022). Thus, it was modeled

as a quadratic polynomial function of year and CCL effects.

Turtle ID was included as a random effect to deal with

repeated measurements. Model selection was performed

using AICc (Sugiura, 1978). Several models had a

DAICc < 2 (see results) and were thus averaged to obtain

FP probability estimates.

Fibropapillomatosis Severity

TTA was analyzed using a Linear Mixed Model (LMM)

with Gaussian distribution. A log-transformation was ap-

plied on TTA to approach normality of the residuals. CCL

and capture site in interaction, year, SSTa, NPP and salinity

were tested as fixed effects. Moreover, TTA variations could

be non-linear across size-classes (dos Santos et al., 2010),

thus a quadratic function was applied on CCL. Turtle ID

was implemented as a random effect. Model selection was

performed using AICc (Sugiura 1978). LMMs were fitted

using packages nlme (Pinheiro et al., 2022).

Ethical Approval

The capture protocol was approved by the Conseil National

de la Protection de la Nature and the French Ministry for

Ecology (permit numbers: 2013154-0037, 201710-0005 and

R02-2020-08-10-006) and was carried out under the cer-

tification of Damien Chevallier (prefectural authorizations’

owner) under strict compliance of the Police of Mar-

tinique’s recommendations and French legal and ethical

requirements to minimize animal disturbance.

RESULTS

Data Description

Among the 750 total capture events occurring within the

study duration, 211 involved FP-afflicted turtles (Table S1)

and 19 were known recovered turtles. A total of 450 indi-

viduals were identified, including 151 turtles captured at

least once with FP clinical signs. Total FP captures resulted

in 135 TTA measurement on 104 individuals (Table S1).

TTA ranged 0.022-201.278 cm2 in ABAC and 0.029–

133.964 cm2 in GA.

Juvenile green turtles were captured between one and

five times during the study period (Fig. S3, mean ± SD in

ABAC = 1.40 ± 0.64 captures/turtle and in GA = 1.79 ±

1.15 captures/turtle). There was no significant geographic

variation in terms of CCL at first non-afflicted capture, first

afflicted capture and first recovered capture (Fig. 3; values

shown in Table S2; Mann–Whitney test; p > 0.05).

Capture-Mark-Recapture Analysis

Goodness-of-Fit and Model Selection

GoF showed neither capture heterogeneity nor transience

(v2 = 54.737, df = 83, p = 0.993). The best model indi-

cated an effect of turtle size and FP3 categories on apparent

survival, a site effect on constant FP development rate and

time-varying recovery rate, and size-class transition rate

depending of FP3 categories (Table 1). FP status had no

effect on recapture probability (Table 1, shown in

Table S4). ANODEV did not detect any effect of tested

environmental covariates on FP development or recovery

rates (Table S3).
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Demographic Parameter Estimates

Apparent survival (U) differed between size-classes. It was

estimated at 0.90 (CI95%: 0.82–0.94) for SMJ turtles

(CCL < 70 cm) regardless of their health status. For LJ

turtles (CCL � 70 cm), there was no difference in apparent

survival between non-afflicted and afflicted turtles (both

equal to 0.71; CI95%: 0.61–0.80). However, recovered LJ

showed a low apparent survival (0.37; CI95%: 0.24–0.52).

FP development rates (WDev) were higher at ABAC

(0.28; CI95%: 0.17–0.42) than in GA (0.14; CI95%: 0.10–

0.20). Time-dependent FP values of recovery rates (WRec)

were poorly estimated by the model with a wide confidence

interval (shown in Table S4). Consequently, WRec estimates

were averaged across the study duration and revealed

higher values in ABAC (0.31; CI95%: 0.21–0.44) than in GA

(0.17; CI95%: 0.10–0.27). Turtles developed the first clinical

signs of the disease within 3.2 (CI95%: 1.6–4.8) years after

settlement in foraging grounds and recovered completely

from FP 2.7 (CI95%: 1.4–3.9) years after first FP clinical

signs in ABAC. In GA, the disease emerged within 6.5

(CI95%: 4.1–8.9) years and recovered completely after 5.4

(CI95%: 2.3–8.4) years.

Fibropapillomatosis Probability

Models n�6 to n�9 presented the lowest values of AICc, and

similar values of AICc Weights (Table 2). All models in-

cluded site and quadratic polynomials of CCL and years.

They were averaged to obtain the estimates of FP proba-

bilities (Fig. 4). The largest difference in FP probability

between the sites was in 2020 (0.73; CI95%: 0.51–0.88 in

ABAC vs 0.15; CI95%: 0.06–0.35 in GA; Fig. 4a). Moreover,

FP probability estimates increased with size in both sites,

with a maximum around 80 cm CCL in ABAC (0.82;

CI95%: 0.52–0.95) and at 100 cm CCL in GA (0.40; CI95%:

0.08 – 0.83). Between * 50 and 80 cm CCL, site-specific

estimated confidence intervals did not overlap, with sub-

stantially lower FP probability in GA than in ABAC

(Fig. 4b).

Figure 3. Curved carapace length (CCL, cm) distribution of green sea turtle (Chelonia mydas) at first non-afflicted capture, first afflicted

capture and first recovered capture at Anse du Bourg d’Arlet/Chaudière (a, b, c) and Grande Anse d’Arlet (d, e, f) for turtles that were captured

at least one time with fibropapillomatosis. Mean minimum curved carapace length is indicated by the vertical dashed line with

associated ± standard deviation in the shaded rectangles (Color figure online).
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Fibropapillomatosis Severity

LMM selection suggested an effect of capture site and

quadratic polynomial CCL on TTA, with no effect of year

or environmental covariates (Table 3). Turtles captured in

ABAC exhibited higher mean TTA than those in GA (2.79;

CI95%: 1.55–5.03 cm2 vs 0.74; CI95%: 0.37–1.48 cm2,

respectively; Fig. 5a). TTA peaked at 75 cm CCL in ABAC

(* 2.85 cm2; CI95%: 0.45–1.64 cm2), while TTA was not

related to CCL in GA (Fig. 5b). In ABAC, four turtles were

Table 1. Capture-Mark-Recapture model selection procedure in E-SURGE v2.2.3 on recapture rate (p), apparent survival (U), health

transitions (W) and size-class transition rate (d) of green sea turtles (Chelonia mydas).

Step N� Model N Par Deviance QAICc DQAICc

p 1 U(St)W(FPxt + Site)d(FP)p(FP + Site + logEC + Turb) 40 2919.9108 3004.5436 25.1135

2 U(St)W(FPxt + Site)d(FP)p(FP2 + Site + logEC + Turb) 39 2915.7283 2998.1289 18.6988

3 U(St)W(FPxt + Site)d(FP)p(Site + logEC + Turb) 38 2916.2942 2996.4689 17.0388

4 U(St)W(FPxt + Site)d(FP)p(Site) 35 2954.6402 3028.1746 48.7445

5 U(St)W(FPxt + Site)d(FP)p(.) 34 2970.9429 3042.2762 62.8461

U 6 U(SizexFP2)W(FPxt + Site)d(FP)p(Site + logEC + Turb) 36 2924.4745 3000,2161 20,786

7 U(SMJ. LJxFP3)W(FPxt + Site)d(FP)p(Site + logEC + Turb) 35 2918.0542 2991,5886 12,1585

8 U(Size)W(FPxt + Site)d(FP)p(Site + logEC + Turb) 34 2927.2498 2998,5831 19,153

9 U(.)W(FPxt + Site)d(FP)p(Site + logEC + Turb) 33 2982.3661 3051,5045 72,0744

W 10 U(SMJ. LJxFP3)W(FP + t + Site)d(FP)p(Site + logEC + Turb) 27 2939.3865 2995.4836 16.0535

11 U(SMJ. LJxFP3)W(FP + Site)d(FP)p(Site + logEC + Turb) 19 2945.3522 2984.3947 4.9646

12 U(SMJ. LJxFP3)W(Dev. + Recxt + Site)d(FP)p(Site + logEC + Turb) 27 2923.5793 2979.6763 0.2462

13 U(SMJ. LJxFP3)W(Devxt + Rec. + Site)d(FP)p(Site + logEC + Turb) 27 2938.4787 2994.5758 15.1457

14 U(SMJ. LJxFP3)W(Dev. + Recxt)d(FP)p(Site + logEC + Turb) 26 2929.2648 2983.2094 3.7793

15 U(SMJ. LJxFP3)W(.)d(FP)p(Site + logEC + Turb) 17 2953.411 2988.2482 8.8181

d 16 U(SMJ. LJxFP3)W(Dev. + Recxt + Site)d(FP2)p(Site + logEC + Turb) 26 2931.2026 2985.1472 5.7171

17 U(SMJ. LJxFP3)W(Dev. + Recxt + Site)d(FP3)p(Site + logEC + Turb) 26 2925.4855 2979.4301 0

18 U(SMJ. LJxFP3)W(Dev. + Recxt + Site)d(.)p(Site + logEC + Turb) 25 2932.0166 2983.8147 4.3846

The best model for each step is in bold and the best model of the overall procedure is in italics.

‘‘.’’ Constant, Dev FP development, FP fibropapillomatosis status, FP2 FP group [afflicted vs non-afflicted + recovered], FP3 FP group [non-

afflicted + afflicted vs recovered], logEC log-transformed capture effort, Rec FP recovery., St state, t time-dependent, Turb turbidity, N. Par number of

parameters.

Table 2. Summary of model selection among Generalized Linear Mixed Model with binomial distribution to FP probability of green sea

turtle (Chelonia mydas).

N� Model N par Deviance AICc DAICc Akaike weight

1 Null 1 844.65 848.66 149.18 0.00

2 Site 2 815.33 821.37 121.88 0.00

3 Site + CCL 3 755.99 764.05 64.56 0.00

4 Site + poly(CCL,2) 4 755.08 765.16 65.68 0.00

5 Site + poly(CCL,2) + Year 5 712.48 724.60 25.11 0.00

6 Site + poly(CCL,2) + poly(Year,2) 6 685.70 699.85 0.37 0.24

7 Site*poly(CCL,2) + poly(Year,2) 8 681.24 699.48 0.00 0.29

8 poly(CCL,2) + Site*poly(Year,2) 8 681.32 699.56 0.08 0.27

9 Site*poly(CCL,2) + Site*poly(Year,2) 10 677.80 700.16 0.67 0.20

Best models are highlighted in bold.

CCL Minimum curved carapace length, N par. Number of parameters.
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captured with TTA > 100cm2 (maximum = 201.27 cm2),

while in GA, only one turtle had TTA > 100 cm2 (maxi-

mum = 133.96 cm2).

DISCUSSION

This study presents critical insights on the FP dynamics and

demographic consequences in juvenile green turtles. FP-

affliction did not affect apparent survival rates but the FP

prevalence, severity, and progression rates were higher in

ABAC than in GA. The recapture probability was similar

between afflicted and non-afflicted turtles, consistent with

other studies (Chaloupka et al., 2009; Patrı́cio et al., 2011).

The lower number of turtles captured in ABAC (Table S1)

was mainly due to lower capture effort (ABAC = 23 half-

days; GA = 43 half-days) and more fearful turtles than in

GA (authors pers. obs.), leading to a lower overall capture

probability in ABAC (Lelong et al., 2024). While FP

prevalence observed in ABAC or GA (* 70% and * 35%

respectively, Fig. S4 are among the highest reported in

Caribbean juvenile green turtle foraging grounds (Hirama

and Ehrhart, 2007; Stringell et al., 2015; Patrı́cio et al., 2016;

Kelley et al., 2022; Muñoz Tenerı́a et al., 2022), FP severity

was locally limited compared to Brazil (5 turtles with

TTA > 100 cm2 among 135 TTA measurements vs 49

among 216 in Brazil; Rossi et al. 2016).

High apparent survival of SMJ (proxy of survival rate)

independently of their FP status indicates no FP effect on

Table 3. Model selection among Linear Mixed Models applied to log(Total Tumor Area).

N Model N par Deviance AICc DAICc Akaike weight

1 Null 1 571.39 577.58 16.80 0.00

2 Site 2 564.89 573.20 12.43 0.00

3 Site + CCL 3 570.36 580.84 20.06 0.00

4 Site + poly(CCL,2) 4 554.88 567.56 6.79 0.02

5 Site*poly(CCL,2) 6 543.58 560.78 0.00 0.54

6 Site*poly(CCL,2) + Year 7 544.44 563.96 3.19 0.11

7 Site*(poly(CCL,2) + Year) 8 542.11 564.00 3.23 0.11

8 Site*poly(CCL,2) + SSTa 7 544.18 563.71 2.93 0.12

9 Site*poly(CCL,2) + SSTa + NPP 8 542.96 564.86 4.09 0.07

10 Site*poly(CCL,2) + SSTa + NPP + Salinity 9 542.20 566.52 5.74 0.03

Best model is highlighted in bold.

CCL Minimum curved carapace length, NPP Net primary production, poly(CCL, 2) Quadratic polynomial of CCL, SSTa Sea surface temperature anomaly,

and TTA Total tumor area.

Figure 4. Estimated FP probabilities (solid lines) with associated 95% confidence interval (shaded areas) in green sea turtles (Chelonia mydas)

extracted from the averaging of the four best model in Anse du Bourg d’Arlet/Chaudière and Grande Anse d’Arlet (blue) by (a) year from 2013

to 2023 and (b) minimum curved carapace length (Color figure online).
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survival rate. These results are similar to those in green

turtles from Puerto Rico (Patrı́cio et al., 2011). Moreover,

apparent survival were similar between non-afflicted and

afflicted LJ turtles indicating no FP effect on emigration

rate. CCL of recovered LJ turtles is close to the mean size at

emigration for this species, i.e., 85 cm CCL (Fig. 3c, f;

Chambault et al., 2018), and their lower apparent survival

was thus more likely due to a higher emigration rate than

mortality as a result of FP infection. Consistently with other

studies, green turtles appeared to mostly survive and re-

cover from FP (Chaloupka et al., 2009; Kelley et al., 2022).

The low cutaneous FP severity in Martinique may mitigate

its impact on survival and emigration rates (Patrı́cio et al.,

2011) as the most important consequences are typically

seen in severely afflicted individuals (Work and Balazs,

1999; Chaloupka and Balazs, 2005; Rossi et al., 2016).

Nonetheless, FP may affect other key life history traits, such

as growth rate (Chaloupka and Balazs, 2005), potentially

delaying maturity and negatively impacting the breeding

population. Although the recent routine measurement of

tumors prevented us from including TTA in the CMR

analysis, we strongly recommend incorporating disease

severity in future assessments of the impact of FP.

Estimated time to develop FP in ABAC (3.2 years) and

GA (6.5 years) were substantially higher than those re-

ported in Puerto Rico (1.8 years; Patrı́cio et al. 2016). FP

recovery in ABAC (2.7 years; WRec = 0.31) was identical to

that described in Puerto Rico (2.7 years; Patrı́cio et al.

2016). Conversely, FP recovery in GA (5.4 years; WRec =

0.17) was more similar to those reported in Hawaii

(WRec * 0.13–0.18; Chaloupka et al. 2009). The long

duration required for FP progression in Martinique may

explain the increasing prevalence up to 85 cm CCL, simi-

larly to Indonesia and Mexico (Adnyana et al. 1997; Muñoz

Tenerı́a et al. 2022). Conversely, FP occurrence decreased

above 50–60 cm straight carapace length (SCL) or CCL in

the Caribbean and West Africa (Hirama and Ehrhart 2007;

Patrı́cio et al. 2016; Monteiro et al. 2021; Perrault et al.

2021; Kelley et al. 2022). ChHV5 or host genetic may affect

FP expression (Greenblatt et al. 2005; Hirama and Ehrhart

2007; Jones et al. 2016; Work et al. 2020; Kane et al. 2021;

Yetsko et al. 2021; Martin et al. 2022; Dupont et al. 2024)

potentially contributing to the diversity in FP dynamics

and expression documented worldwide. In Florida, larger

juveniles typically achieve complete recovery before leaving

foraging grounds (Kelley et al., 2022). In Martinique, the

high FP prevalence at large size, the lack of FP’s effect on

apparent survival and the limited number of known

recovered turtles (n = 19) suggests that definitive emigra-

tion without complete recovery likely occurred. The pres-

ence of residual tumors could have negative effects on

migration, such as increased energy expenditure due to the

drag of tumors (O’Connell et al., 2021) and the defense

against infection (Mahmoudabadi et al., 2017), potentially

impacting demographic parameters of the breeding life-

stage.

FP development and recovery rates estimations indi-

cated a faster progression of the disease in ABAC than in

Figure 5. (a) Mean estimated total tumor area (TTA) per individual green sea turtle (Chelonia mydas) in Anse du Bourg d’Arlet/Chaudière

(ABAC) and Grande Anse d’Arlet (GA) with associated 95% confidence interval and (b) site-specific estimated TTA per individual function of

minimum curved carapace length with associated 95% confidence interval (half-shaded ribbon) from selected Linear Mixed Model. On both

panels, each red or blue dot corresponds to the raw data. Y-axis is on a logarithmic-scale (Color figure online).
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GA. Consequently, FP tumors developed at 50 cm CCL on

turtles that settled in ABAC (Fig. 4b) and TTA reached

then its maximum at 70 cm CCL in ABAC (Fig. 5b).

Temporal prevalence in ABAC followed an epizootic curve

(Fig. 4a) as reported in Australia (Jones et al., 2022), Ha-

waii (Chaloupka et al., 2009), Mexico (Muñoz Tenerı́a

et al., 2022) and Puerto Rico (Patrı́cio et al., 2016). Con-

versely, FP prevalence and severity in GA showed no peaks

during the study period (Fig. 4a), similar to prevalence

pattern observed in Australia (Jones et al., 2022). Unlike

Chaloupka et al. (2009), CMR analysis indicated a constant

FP development rate though the recovery rate appeared to

fluctuate over time. Given the differences in FP prevalence

curves between the two sites, it is possible that temporal

variations in recovery rate also vary between ABAC and

GA. Yet, FP recovery estimates had low precision

(Table S3). Additionally, there was no available site-specific

measurements of the tested environmental cofactors and

only large-scale variables were implemented in the models.

As a result, the specific role of the disease recovery rate in

the site-specific FP dynamics and its potential fine-scale

external drivers in our study area therefore remain un-

known.

Seagrass beds’ structure, its alteration by boat

anchorage and the presence of the invasive phanerogam

Halophila stipulacea are known to be equivalent between

the two studied sites (Siegwalt et al., 2022). Moreover, high

density of conspecifics and the recruitment of new sus-

ceptible individuals have been suggested as potential drivers

of FP dynamics (Patrı́cio et al., 2016; Roost et al., 2022).

Nonetheless, the demography and size structure of the

green turtle population were identical on ABAC and GA

(Siegwalt et al., 2020; Lelong et al., 2024). These ecological

parameters are therefore unlikely to explain the differential

FP rates observed, unlike the potential variations of several

other cofactors between the bays.

Genetic profile could affect the resistance of individuals

to infectious disease (Uller et al., 2003). In ABAC and GA

combined, the genetic origin of juvenile green turtles is

known to be highly diverse (Chambault et al., 2018).

Considering there is a poor connectivity between these two

foraging grounds (Siegwalt et al., 2020; Lelong et al., 2024),

site-specific genetic composition of juvenile green turtle

population could vary and should be thus explored as it

may modify FP dynamics.

Persistent organic pollutants and trace elements are

present in the French West Indies marine ecosystem and in

sea turtles (Dyc et al., 2015; Bouchon et al., 2016; Dromard

et al., 2016), partially originating from sewage (Fernandez

et al., 2007). Main known pollution occurred inside ABAC,

and resulting consequences on FP may be thus stronger in

ABAC than in GA. Tourism pressure can also vary between

ABAC and GA, leading to a geographic variation of pol-

lution and human disturbance. Finally, there is potentially

small-scale differences between ABAC and GA in physico-

chemical parameters (e.g. hydrodynamics, salinity, tem-

perature) that could affect both FP (Manes et al., 2022)

and/or coastal water quality through water renewal (Tosic

et al., 2019). To explain the differences in FP dynamics

between bays, there is an urgent need to measure the site-

specific environmental conditions and anthropogenic

pressures experienced by juvenile green turtles.

More generally, the presence of FP in Martinique may

be linked to low habitat quality, chronic stress and co-

infections through oxidative stress (Costantini et al., 2011;

Costantini, 2022; Labrada-Martagón et al., 2024), which is

known to alter immunity and facilitate herpesvirus infec-

tion in vertebrates (Sebastiano et al., 2016). Considering

the potential role of anthropogenic stressors in FP, the

comprehension of this disease and its dynamics requires

further cross-disciplinary investigations in a One Health

framework with the aim of improving the health of green

turtles, of their environment and of humans exploiting the

coastal resources (Xie et al., 2017; Espinoza et al., 2024).

CONCLUSION AND PERSPECTIVES

This study reveal substantial differences in the occurrence

and severity of FP between two geographically close sites,

but the underlying environmental and internal cofactors

that drive the disease remain unknown. Further research

should focus on 1) the consequences of FP on demographic

parameters (survival, emigration, somatic growth rate) in

relation to the disease severity, 2) the interactions between

FP development and recovery rates, FP dynamics and

developmental migration and 3) the environmental cofac-

tors, internal health status and genetics involved in the FP

dynamics with an emphasis on the biotic and abiotic

specificity of each foraging ground. Additionally, these ef-

forts should be extended beyond Martinique to assess the

consequences of FP on the demography of Atlantic green

turtle populations. A better understanding of FP dynamics

and its possible drivers will enable useful measures for sea

turtle conservation (Fuentes et al., 2023), given that FP

affects all seven species of sea turtles worldwide. More
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generally, FP serves as a key case for understanding the

relationships between wildlife diseases, hosts and potential

external stressors.
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