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d Réserve Naturelle Du Marais D’Yves LPO, Ferme de La Belle Espérance, 17340, Yves, France 
e Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France 
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A B S T R A C T   

Coastal ecosystems are among the most diverse and productive systems on earth, but they are threatened by 
various anthropogenic pressures. To understand the magnitude of these constraints on biodiversity, it is essential 
to assess habitat use of coastal species, which can be challenging in the complex matrix of habitats in coastal 
environments. The stable isotope method is a powerful tool to assess foraging habitat, as marine influences on the 
trophic web should decrease with increasing distance from the ocean. In this study, we evaluated whether 
isotopic values (δ15N, δ13C and δ34S) can be useful to assess habitat use in a coastal amphibian, the western 
spadefoot toad (Pelobates cultripes). In two coastal wetlands of the French Atlantic coast, we captured individuals 
from 20 to 1300 m from the seashore in order to assess whether isotopic values were related to the distance to the 
coastline, and we combined this dataset with data on osmolality that correlate to distance to the ocean in this 
species. We found divergent site-specific responses, presumably linked to the site-specific extent of a recent 
marine submersion, highlighting the long-lasting effects of such extreme weather event on trophic webs. In both 
sites however, we found a larger isotopic niche closer to the seashore suggesting wider diet or prey depending on 
wider resources near the sea. Overall, our results suggest that isotopic values can provide insights on habitat use 
depending on site-specific characteristics. Combining isotopic values with other metrics (e.g., osmolality) allows 
to better understand isoscapes in a site-specific context.   

1. Introduction 

Terrestrial coastal ecosystems are located at the boundary between 
oceanic and terrestrial ecosystems. They are one of the most dynamic 
interfaces among biomes (Sheaves, 2009) and are subject to complex 
interactions between marine and terrestrial influences (McLean et al., 
2001). As a consequence, coastal ecosystems are among the most diverse 
and productive systems on earth (Hobohm et al., 2021; Sheaves, 2009). 
They are recognized as hotspots of biodiversity providing resources for a 
large number of species (Hobohm et al., 2021). In addition, they 
contribute to a large panel of ecosystem services (Barbier, 2015; 
Spalding et al., 2014). Yet, they are threatened by various anthropogenic 
activities such as urbanization, agriculture, environmental 

contamination, tourism and overexploitation (Hobohm et al., 2021). In 
addition to these spatially restricted threats, coastal areas are also pre
dicted to be impacted by climate change through two main processes: 
the progressive rise of sea level (Kulp and Strauss, 2019) and the in
crease in frequency and intensity of storms and associated marine sub
mersions (i.e., causing ocean water to temporary cover coastal areas, 
Dettinger, 2011; McLean et al., 2001). All of these threats are expected 
to affect coastal biodiversity, but it remains essential to assess habitat 
use of coastal species to better understand how increasing environ
mental changes affect coastal ecosystems and their biodiversity. 

Coastal wetlands are composed of a complex matrix of habitat types 
distributed across very short spatial scales (e.g., few hundred meters, 
McLean et al., 2001). These habitats cover a continuum between 
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intertidal sandy area, mudflats and seagrass beds; through salt and 
freshwater marshes or swamps; up to sand dunes, grasslands and forests; 
along with increasing distance from the seashore (Maynard and Wilcox, 
1997; McLean et al., 2001). In most cases, a given species will use each 
of these habitat types differentially according to its life-history stage 
(Arthur et al., 2008; Rathbun et al., 2002), its physiological state (Bri
schoux et al., 2013) and its energetic requirements (Schwemmer and 
Garthe, 2008). Foraging habitat is thus a central feature of overall 
habitat use as it will determine the quality and the quantity of resources 
available to an organism, which will be selected according to life stage of 
an individual (growth, reproduction, migration); or individual strategies 
and dietary specialization (Robinson and Wilson, 1998). In addition, 
foraging is often associated with risk-taking behaviours (Verdolin, 
2006). These elements suggest that precise selection of a suitable 
foraging habitat will ultimately influence fitness through increased en
ergetic incomes and reduced predation risks. Importantly, in coastal 
ecosystems, the use of habitats situated close to the seashore is also 
expected to reflect an individual’s vulnerability to extreme weather 
events (e.g. marine submersions, Lorrain-Soligon et al., 2021) and thus 
the persistence of coastal populations. Yet, assessing the habitat use of 
individuals within the complex matrix of habitats highlighted above is a 
challenging task that may reveal logistically prohibitive (e.g., fine scale 
tracking of individual movements, Ponchon et al., 2013). The use of 
stable isotopes analyses can offer a powerful alternative to identify 
hard-to-measure variables, such as foraging habitats (Bearhop et al., 
2003; Choy et al., 2011; Monti et al., 2021). 

The concept of the isotopic niche is based on the fact that an in
dividual’s chemical composition is influenced by what it consumes and 
assimilates (Brüssow and Parkinson, 2014; Kohn, 1999), which can be 
characterized by analyzing stable isotopes (Kudman, 2021; Layman 
et al., 2012; McCue et al., 2020). Stable nitrogen isotope values (δ15N) 
are mostly used as a surrogate of trophic position, but can be also a 
relevant proxy of consumers’ foraging habitat (Minagawa and Wada, 
1984; Peterson and Fry, 1987; Vander Zanden and Rasmussen, 1999). In 
our context, δ15N is thought to increase with increasing salinity (Fry, 
2002; Hussain and Al-Dakheel, 2018), and may thus increase in marine 
compartments compared to terrestrial ones. Complementarily, stable 
carbon values (δ13C) vary among specific primary producers and this 
parameter can be used to examine differences in trophic support and 
thus presumably habitats (Minagawa and Wada, 1984; Peterson and Fry, 
1987; Vander Zanden and Rasmussen, 1999). Similarly to δ15N, δ13C is 
thought to increase with salinity (Fry, 2002), and thus values for oceanic 
carbon should be higher than for terrestrial one. Finally, stable sulfur 
values (δ34S) allow discriminating between marine or terrestrial food 
webs since values for marine sulfate are generally higher (Leyden et al., 
2021; Lott et al., 2003; Michener, 1994). As such, like for δ15N and δ13C 
values, δ34S is thought to decrease when salinity decreases and distance 
from the coastline increases (Fry and Chumchal, 2011). 

Isotopic values of all three elements are expected to vary across 
coastal habitats, especially according to increasing distance from the 
ocean. Indeed, coastal winds cause landward transport of matter such as 
sediment (Ridderinkhof, 1998; Zhang et al., 2020), organic matter 
(Pelegrí et al., 2005) and salts (Demoisson et al., 2013); and their 
deposition is expected to progressively decrease with increasing dis
tance from the shore (Meira et al., 2008; Mustafa and Yusof, 1994). 
Accordingly, the influence of such deposition of matter of marine origin 
on the trophic web – and thus on stable isotope values - should pro
gressively decreases with increasing distance from seawater. It is 
therefore expected that isotopic values will be enriched close to the 
seashore, and that they will decrease with increasing distance from the 
ocean. Indeed, an individual foraging closer to the seashore should 
display δ15N, δ13C and δ34S values close to those from marine systems, 
while individuals foraging further inland should display δ15N, δ13C and 
δ34S values indicative of terrestrial ecosystems. 

In this study, we tested this hypothesis and evaluated whether δ15N, 
δ13C and δ34S values can be useful to assess habitat use (proximity to the 

seashore) in the terrestrial coastal amphibian Pelabates cultripes captured 
along a continuum of distance from the seashore (from 20 to 1300 m). 
Because landward transport of sediments and organic matters occurs 
primarily at a very short spatial scale (Bainbridge et al., 2018; Ridder
inkhof, 1998), we also investigated these variations at a smaller extend, 
within 200 m from the seashore. Such decrease in marine influence on 
isotopic values has already been suggested with a similar variation of 
osmolality of toad blood according to distance to seawater (Lorrain-
Soligon et al., 2022), because osmolality is related to salt exposure 
through sea-spray (Benassai et al., 2005; McLean et al., 2001). As a 
consequence, we complemented our isotopic analyses with osmolality 
measurements (Lorrain-Soligon et al., 2022) as an independent marker 
of marine influence and we predicted that individual’s plasma osmo
lality should correlate with δ15N, δ13C and δ34S values. 

2. Materials and methods 

2.1. Study species 

The western spadefoot toad, Pelobates cultripes, is an amphibian 
relatively tolerant to salinity (Stănescu et al., 2013; Thirion, 2014). This 
species is mostly distributed in the region of the Iberian Peninsula and 
along the French Mediterranean and Atlantic coasts (Lizana et al., 1994; 
Leclair et al., 2005; Thirion, 2014). As most amphibians, western spa
defoot toads have a biphasic lifestyle. Eggs and larvae develop in fresh 
and brackish water bodies (Stănescu et al., 2013), while terrestrial ju
veniles and adults are distributed from very close to the seashore up to 5 
km inland, where they shelter in sandy soils during the day and forage 
for invertebrates at night (Speybroeck et al., 2018). 

2.2. Study sites 

The study was carried out from October 7, 2020 to October 23, 2020 
on two natural reserves located on the Atlantic coast of France 
(Département de la Charente-Maritime), and separated by ~15 km 
straight line: the « Réserve Naturelle Nationale de Moëze-Oléron » 
(45◦54′20.4′′N, 1◦04′19.9′′W, hereafter MO), and the « Réserve 
Naturelle Nationale du marais d’Yves » (46◦2′40.735′′N, 1◦3′16.906′′W, 
hereafter MY) (see Fig. 1). The two sites have been thoroughly described 
in Lorrain-Soligon et al. (2021), including their topographic profiles. 
Both sites are low coastal wetlands (mean elevation: MY = 2.64 m ±
0.02 SE; MO = 2.90 m ± 0.01 SE), with sand dunes near the seashore 
(~100 m from the seashore; 3.30 m high for both sites). Additionally, 
MO displays an additional dune situated ~500 m inland. These slightly 
different topographies have led to different consequences of marine 
submersions. Indeed, both sites were hit by storm Xynthia in 2010, 
during which MY was completely submerged, while the extent of the 
submersion was minor in MO (see Lorrain-Soligon et al., 2021). These 
two sites are composed of a matrix of habitats typical of coastal wet
lands: salt marsh, meadows, and freshwater ponds. In MO, pond salinity 
decreases with increasing distance from the shore, while in MY, pond 
salinity remains constant (Lorrain-Soligon et al., 2022). Both sites are 
exposed to an oceanic climate (Cfb according to Köppen classification), 
and to the same regime of winds. 

2.3. Field procedures 

On each site, three areas were prospected according to their distance 
to the seashore: close (<200 m from the ocean), intermediate (between 
200 and 600 m to the ocean), and distant (>600 m from the ocean) (see 
Fig. 1), all characterized by the presence of sandy soil. All field surveys 
were carried out at night, between 9 p.m. and 4 a.m. Sixty-seven adults 
were captured (35 in MO, 28 females and 7 males, and 32 in MY, 24 
females and 8 males). Each individual toad was measured (Snout-to- 
Vent Length [SVL]) using a caliper [±1 mm]), weighed (pesola spring 
scale [±0.5 g]), and sexed using secondary sexual characters 
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(Speybroeck et al., 2018). Characteristics of body mass and size of the 
individuals are given in Appendix A. Precise locations of capture were 
recorded with a GPS (Garmin GLO) to assess the exact position of in
dividuals, and thus its distance to the ocean at high tide, using the 
NNJoin extension on Qgis 3.10. 

All blood sampled individuals weighted >15 g. Blood was collected 
by cardiocentesis, and blood volume was ≤150 μl, thus representing 
<1% of toad body mass (Diehl et al., 2001; Soulsbury et al., 2020). Blood 
was centrifuged for 7 min at 2000 G to separate plasma from blood cells. 
Both fractions were stored frozen at − 20 ◦C until analyses. Plasma 
osmolality (mOsmol.kg− 1) were re-analyzed from Lorrain-Soligon et al. 
(2022) and red blood cells (hereafter blood) were used for isotopic an
alyses (see below). 

2.4. Isotopic analyses 

Isotopic analyses were carried out on freeze-dried blood at the 
LIENSs (La Rochelle, France). Aliquots of ~0.3 mg (for δ13C and δ15N) 
and ~0.8 mg (for δ34S) dry mass were analyzed with a continuous flow 
mass spectrometer (Thermo Scientific Delta V Advantage) coupled to an 
elemental analyzer (Thermo Scientific Flash EA 1112). Results are pre
sented as standard delta (δ) notation as parts per mil (‰) deviation 
relative to Vienna Pee Dee Belemnite, atmospheric N2 and Vienna- 
Canyon Diablo Troilite for S) for δ13C, δ15N and δ34S, respectively. In
ternal laboratory standards USGS-61 (Caffeine) and USGS-62 (Caffeine) 
for both C and N, and USGS-42 (human hair) and IAEA-S2 (silver sulfide) 
for S were used to check accuracy. Measurement errors were < 0.15‰ 
for both δ13C and δ15N values, and <0.20‰ for δ34S values. 

2.5. Statistical analyses 

The effects of the distance to the shore on variables were tested 
across the whole spatial scale of our study, and also within the closest 
area (<200 m) to investigate localized effects at small scale (see results). 

To test for the effect of distance to the ocean on blood isotopic values, 
simple linear models (lms) were computed, and we further tested if 

individual traits (sex and body size) were significant covariates by using 
lms with size, sex and their interaction with distance to the ocean. A 
backward model selection using F tests (Bolker et al., 2009; Zuur et al., 
2009) was carried out, and only the retained variables are represented 
(e.g. sex was never a significant predictor). A dataset of plasma osmo
lality values (Lorrain-Soligon et al., 2022) was also re-analyzed, with a 
focus on small scale localized effects within the sites situated close to the 
seashore. The relationships between isotopic values were analyzed, as 
were those between isotopic values and osmolality, using lms with 
osmolality or isotopic values as a covariate. 

Finally, categories of distance to the seashore (close [<200 m], in
termediate [between 200 and 600 m], and distant [>600 m]) were used 
to investigate the trophic niches of populations living closer to or further 
from the shore using Bayesian statistics with the Package SIBER: Stable 
Isotope Bayesian Ellipses in R (Jackson et al., 2011). These Bayesian 
models can be applied for populations if n > 10 (Jackson et al., 2011) as 
it is the case in our populations. This approach computes the total area of 
the convex hull encompassing the data points (TA), representing the 
total extent of trophic diversity and niche width (Jackson et al., 2011; 
Layman et al., 2007), and the Standard Ellipse Area (SEA) or the cor
rected Standard Ellipse Area (SEAc) (Jackson et al., 2011), allowing to 
compare subpopulations. Overlap of SEAC among areas (close, inter
mediate, distant) was calculated for each population. Additionally, we 
compared populations using the range of δ15N values illustrating trophic 
diversity, the range of δ13C and δ34S values illustrating the diversity of 
basal resources, the mean distance to centroid (CCD) providing infor
mation on niche width as well as individual spacing, the mean nearest 
neighbour distance (MNND) illustrating density of individuals in the 
populations, and the standard deviation of the nearest neighbour dis
tance (SDNND), a measure of evenness of spatial density and packing 
(Jackson et al., 2011; Layman et al., 2007). 

All data analysis were performed using R 3.6.3 (R Core Team, 2020) 
and Rstudio v1.1.419. 

Fig. 1. Map of Western France including the two study sites and the position of the captured Pelobates cultripes in the close, intermediate and distant areas from the 
shore at each site. MO: Réserve Naturelle Nationale de Moëze-Oléron, and MY: Réserve Naturelle Nationale du marais d’Yves. 
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3. Results 

3.1. Variations with distance to the ocean 

In MO (« Réserve Naturelle Nationale de Moëze-Oléron ») when the 
whole spatial scale (close, intermediate and distant area) was consid
ered, blood δ13C, δ15N and δ34S values, as well as plasma osmolality, 
decreased with distance from the ocean (Table 1; Fig. 2 ACEG). This 
decrease was sharper for δ13C, δ15N and osmolality when considering 
only the closest area (<200 m from the ocean, Table 1, Fig. 2 BDH), but 
this was not the case for δ34S for which, in the closest area, the isotopic 
value was not influenced by distance to the ocean (Table 1, Fig. 2F). 

In MY (« Réserve Naturelle Nationale du marais d’Yves »), when the 
whole spatial scale was considered, plasma osmolality decreased 
significantly when distance to the ocean increased (Table 1, Fig. 2G). 
Blood δ34S values increased with distance from the ocean (Table 1, 
Fig. 2E), while δ15N and δ13C did not vary according to the distance to 
the ocean (Fig. 2 AC). Distance to coastline did not influence δ15N, δ13C, 
δ34S or osmolality on the small spatial scale (i.e. on the closest area only, 
<200 m from the ocean, Fig. 2 BDFH). 

3.2. Effects of individual traits 

In interaction with distance to the coast, a negative effect of body size 
on δ15N and δ13C values was found only in MO, and when considering 
the closest area only (<200 m, Table 1, Appendix B). For all other iso
topic values and osmolality, and for all sites and areas, there were no 
effects of size, sex, and of their interaction with distance to the coast 
(Table 1). 

3.3. Correlations between isotopic values 

In MO, across the whole spatial scale, δ15N and δ13C values were 
correlated (R2 = 0.615, p-value<0.001), as well as δ15N and δ34S values 
(R2 = 0.140, p-value = 0.015), but not δ13C and δ34S (R2 = 0.006, p- 
value = 0.279). When restricting our analyses to the closest area (<200 
m from the ocean), δ15N and δ13C values were correlated (R2 = 0.986, p- 
value<0.001), but no correlation with δ34S values was significant (all R2 

< − 0.064, all p-value>0.545). 
In MY across the whole spatial scale, none of the isotopic values was 

correlated (all R2 < 0.057, all p-value>0.100). When restricting our 
analyses to the closest area (<200 m from the ocean), δ15N and δ13C 
values were correlated (R2 = 0.617, p-value = 0.001), but no correlation 
with δ34S values was significant (all R2 < − 0.064, all p-value>0.545). 

3.4. Correlations between isotopic values and osmolality 

In MO, both across the whole spatial scale and when restricting our 
analyses to the closest area (<200 m from the ocean), blood δ15N and 
δ13C values were correlated with plasma osmolality (all R2 > 0.607, all 
p-value<0.001, Fig. 3 ABCD), but this was not the case for δ34S values 
(whole spatial scale, R2 = − 0.011, p-value = 0.428, Fig. 3E; closest area, 
R2 = − 0.085, p-value = 0.655, Fig. 3F). 

In MY, δ15N, δ13C and δ34S values were not correlated to osmolality 
(all R2 < 0.191, all p-value>0.087, Fig. 3 ABCDEF). 

3.5. Comparisons of isotopic niches 

Western spadefoot toads from the two sites differed in their isotopic 
niche. In particular the δ13C-δ15N niche (TA) was larger in MO compared 
to MY, with wider δ13C and δ15N ranges, more dispersion in δ13C and 
δ15N values, more trophic diversity (CCD) and trophic evenness 
(SDNND) for the δ13C-δ15N range (Table 2). By contrast, the δ13C- δ34S 
niche (TA) was larger in MY compared to MO, with a wider δ34S range, 
and more dispersion in δ34S values (Table 2). Individuals from MY also 
expressed more trophic diversity (CCD) and trophic evenness (SDNND) 
for the δ13C- δ34S range (Table 2). 

When considering isotopic niches with δ13C and δ15N values, we 
found that the trophic niche (TA and SEA) was larger closer to the ocean 
(in the closest area, <200 m from the ocean) in both sites (Fig. 4 AB, 
Table 3). 

Concerning isotopic niches with δ13C and δ34S values, we also found 
that the trophic niches (TA and SEA) were larger closer to the ocean (in 
the closest area, <200 m from the ocean) in both sites (Fig. 4 CD, 
Table 3). 

Overlaps between the close, intermediate and distant areas were 
smaller in MO than in MY (Appendix C). 

4. Discussion 

In this study, we tested whether blood stable isotope values are 
useful to assess habitat use (distance to the shoreline) across terrestrial 
coastal wetlands in an amphibian, the western spadefoot toad Pelobates 
cultripes. Because coastal winds cause landward transport of matter, 
marine influence was expected to progressively decrease with increasing 
distance from the ocean (Meira et al., 2008; Mustafa and Yusof, 1994). 
Overall, our results highlighted divergent site-specific responses (Den
ton et al., 2019). In one of our study sites (MO), as predicted, all three 
elements investigated (blood δ15N, δ13C and δ34S values) decreased with 
increasing distance from the ocean. However, in the other study site 
(MY), two of the isotopic values (δ15N and δ13C) did not vary with dis
tance to the shoreline and δ34S values showed a trend opposite to our 

Table 1 
Effects of distance to the ocean, size and their interaction on blood δ13C, δ15N and δ34S values, and plasma osmolality in MY and MO across the whole study sites (close, 
intermediate, distant), or restricted to the closest area. MO: Réserve Naturelle Nationale de Moëze-Oléron and MY: Réserve Naturelle Nationale du marais d’Yves. Note 
that only the retained covariates are represented.   

Sites Covariates  MO  MY    

R2 Estimate SE t p R2 Estimate SE t p 

Blood δ13C All areas Distance 0.114 − 0.001 <0.001 − 2.314 0.027 0.057 <-0.001 <0.001 − 1.693 0.101 
Closest area only Distance 0.901 0.325 0.125 2.607 0.035 − 0.028 − 0.003 0.004 − 0.838 0.422 

Size 0.246 0.097 2.551 0.038 – – – – 
Distance*Size − 0.007 0.002 − 3.554 0.009 – – – – 

Blood δ15N All areas Distance 0.324 − 0.002 <0.001 − 4.156 <0.001 0.030 0.001 0.001 1.404 0.171 
Closest area only Distance 0.924 0.264 0.105 2.504 0.041 0.179 − 0.013 0.007 − 1.846 0.095 

Size 0.205 0.082 2.512 0.04 – – – – 
Distance*size − 0.006 0.002 − 3.614 0.009 – – – – 

Blood δ34S All areas Distance 0.167 − 0.001 <0.001 − 2.791 0.009 0.467 0.007 0.001 5.31 <0.001 
Closest area only Distance − 0.1 0.007 0.026 0.265 0.797 − 0.042 − 0.007 0.008 − 0.946 0.367 

Plasma Osmolality All areas Distance 0.375 − 0.035 0.007 − 4.623 <0.001 0.114 − 0.022 0.01 − 2.235 0.033 
Closest area only Distance 0.676 − 1.614 0.345 − 4.677 0.001 − 0.066 − 0.063 0.111 − 0.567 0.584  

L. Lorrain-Soligon et al.                                                                                                                                                                                                                       



Estuarine, Coastal and Shelf Science 274 (2022) 107953

5

Fig. 2. Blood δ13C, δ15N, δ34S values, and plasma osmolality in relation to distance to the ocean across the whole study sites (left column) and restricted to the closest 
area (right column). Regression lines are used for significant relationships solely. MO: Réserve Naturelle Nationale de Moëze-Oléron and MY: Réserve Naturelle 
Nationale du marais d’Yves. Panel G is redrawn from Lorrain-Soligon et al. (2022). 
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prediction. Nevertheless, individual osmolality (related to landward 
transport of sea-spray and salt intake, Lorrain-Soligon et al., 2022) 
showed a decrease according to distance to the ocean at both sites. 

In MO, we found that all three isotopic values decreased with 
increasing distance from the shoreline as expected from a progressive 
decline in marine matter deposition with increasing distance from the 
ocean. This trend was also detectable at a smaller spatial scale (<200 m 
from the coastline) for both δ15N and δ13C values. Such a pattern sug
gests that the deposited marine matter is integrated within the trophic 
web, from primary producers up to meso-predators such as the western 
spadefoot toad. All three isotopic values were related to one another 
when considering the whole spatial scale, which strengthens this hy
pothesis. The strong effect close to the shoreline (see slopes in Fig. 2AC 
versus Fig. 2BD, Table 1) suggests that this process occurs primarily at a 
very short spatial scale, as expected from the spatial extent of the 

windward transport of relatively heavy particles such as sediment and 
organic matter (Bainbridge et al., 2018; Ridderinkhof, 1998). Interest
ingly, δ34S variation showed a similar trend across the whole spatial 
scale of our study, but no significant trend when restricting our analyses 
to the close study area (<200 m). These results suggest that δ34S values 
does not vary on such a restricted spatial scale, as shown in other studies 
(Nehlich, 2015; Novák et al., 2001). Blood δ34S values could thus 
decrease on a larger spatial scale, only a small part of which being 
covered by our sampling (Nehlich, 2015; Novák et al., 2001). In line 
with these results, we found that individual osmolality (related to salt 
intake and linked to landward transport of sea-spray, Lorrain-Soligon 
et al., 2022) dovetails remarkably well with the isotopic trends. Plasma 
osmolality was strongly linked to both blood δ15N and δ13C values either 
at the global scale, or when restricted to the closest study area. It is 
noteworthy that both sets of markers provide information at different 

Fig. 3. Correlations between blood δ13C, δ15N, δ34S values, and plasma osmolality across the whole study sites (left column) and restricted to the closest area (right 
column). Regression lines are used for significant relationships solely. MO: Réserve Naturelle Nationale de Moëze-Oléron and MY: Réserve Naturelle Nationale du 
marais d’Yves. 
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temporal scale. Blood isotopic values provide information according to 
the life of erythrocytes that lasts several months in amphibians (Altland 
and Brace, 1962; Cloyed et al., 2015). Plasma osmolality is much more 
dynamic (e.g., days or weeks) and varies according to freshwater intake 
(e.g., during rainfall) that allows equilibrating an individual’s hydric 
state (Hillyard et al., 1998; Park and Do, 2020). Such similar trends for 
markers that integrate different temporal scales suggest individual 
specialization in habitat use. Future studies combining mark-recapture 
studies and repeated measures of isotopic values (on plasma and red 
blood cells, see Denton et al., 2019) and plasma osmolality should 
usefully test for this hypothesis. 

In strong contrast with the results from MO, none of the isotopic 
values displayed the expected trends at the MY site. Neither δ15N nor 
δ13C values were related to distance to the shoreline, either at the whole 
spatial scale or when restricting our analyses to the closest area solely. 
This divergence was even stronger for δ34S values, which increased with 
increasing distance from the shoreline. Similarly to MO, osmolality of 
individuals from MY decreased with increasing distance from the ocean 
(Lorrain-Soligon et al., 2022), but, unlike MO, osmolality was not 
related to any isotopic value. Although such contrast between close and 

Table 2 
Isotopic site metrics for blood δ13C and δ15N values (upper line), and blood δ13C 
and δ34S values (lower line), computed from SIBER for MO (Réserve Naturelle 
Nationale de Moëze-Oléron) and MY (Réserve Naturelle Nationale du marais 
d’Yves): δ13C (δ13C range), δ15N (δ15N range) and δ34S (δ34S range), Total Area 
of the convex hull encompassing the data points (TA), mean Distance to Centroid 
(CCD), Mean Nearest Neighbour Distance (MNND), and Standard Deviation of 
the Nearest Neighbour Distance (SDNND).    

MO MY 

Blood δ13C and δ15N δ15N range 2.086 0.990 
δ13C range 1.632 0.666 
TA 1.640 0.028 
CCD 1.190 0.423 
MNND 1.746 0.564 
SDNND 0.295 0.119 

Blood δ13C and δ34S δ34S range 1.205 5.182 
δ13C range 1.632 0.666 
TA 0.967 1.472 
CCD 0.894 2.013 
MNND 1.372 2.311 
SDNND 0.286 1.246  

Fig. 4. Blood isotopic niches for δ13C and δ15N (upper panels) and δ13C and δ34S (lower panels) in MO (left column) and MY (right column) as determined using 
SIBER. MO: Réserve Naturelle Nationale de Moëze-Oléron and MY: Réserve Naturelle Nationale du marais d’Yves. 

Table 3 
Subpopulations metrics computed from SIBER for blood δ13C and δ15N values (upper line), and blood δ13C and δ34S values (lower line). Total Area of the convex hull 
encompassing the data points (TA), Standard Ellipse Area (SEA) and corrected Standard Ellipse Area (SEAc) in the close, intermediate and distant areas in MO and MY. 
MO: Réserve Naturelle Nationale de Moëze-Oléron and MY: Réserve Naturelle Nationale du marais d’Yves.    

MO MY  

Areas Close Intermediate Distant Close Intermediate Distant 

Blood δ13C and δ15N TA 2.961 0.855 0.847 4.863 1.350 1.062 
SEA 1.693 0.416 0.386 2.010 0.627 0.491 
SEAc 1.881 0.454 0.428 2.210 0.705 0.552 

Blood δ13C and δ34S TA 16.788 0.980 0.765 7.323 4.338 2.196 
SEA 9.195 0.421 0.390 2.978 2.307 1.195 
SEAc 10.216 0.460 0.433 3.276 2.595 1.345  
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structurally similar study sites can appear puzzling, we believe the un
derlying reason is related to the recent history of these sites. Indeed, 
both sites were hit by storm Xynthia in 2010, but the spatial extent of the 
associated marine submersion was strongly different between the two 
sites, due to their slightly different topography (i.e., additional sand 
dune in MO compared to MY; Lorrain-Soligon et al., 2021). MY was 
entirely submerged and seawater have been retained several weeks, 
especially in lowland areas. The resulting salinization was still detect
able seven years after the submersion (Lorrain-Soligon et al., 2021). By 
contrast, owing to its topography (Lorrain-Soligon et al., 2021), coastal 
wetlands of MO were spared from the marine submersion induced by 
storm Xynthia (Lorrain-Soligon et al., 2021). This suggests that the ef
fects of a marine submersion and the resulting deposition of marine el
ements (salt, sediments, and organic matter) can disrupt isotopic 
signatures of coastal areas, a process that appears to be long-lasting as 
our isotopic sampling occurred 11 years post-submersion. If such hy
pothesis holds true, it is a major element to take into account when 
integrating isotopic analyses to habitat use and individual movements in 
coastal ecosystems, as it seems necessary to take into account the history 
of marine intrusions to understand the spatio-temporal dynamics of 
isotopic values (Baumann et al., 2017; Raji et al., 2015). However, this 
hypothesis cannot fully explain the δ34S variation at MY, as well as the 
strong contrast of δ34S values close to seashore between MO and MY. 
Such contrasts between close and structurally similar study sites remain 
puzzling and clearly deserve future investigations. Overall, δ34S iso
scapes are known to be highly variable (Nehlich, 2015), and such 
variation may explain the trends we found. Future studies are required 
to decipher the bases for such divergences between close and structur
ally similar coastal wetlands. Extending our investigations to other 
coastal taxa may also provide critical insights on the variation of δ34S 
values. 

As a consequence of these divergent spatial dynamics of isotopic 
values, trophic niches of western spadefoot toads were also different 
between our study sites. Blood δ34S range was higher in MY, suggesting 
more marine-derived nutrients in the habitat (Hesslein et al., 1991; 
MacAvoy et al., 2000). However, δ13C and δ15N ranges were higher in 
MO, suggesting wider food resources, as these elements reflect the 
variability of basal food resources (Potapov et al., 2019). Interestingly, 
in both study sites, we found a larger isotopic niche closer to the 
seashore, both considering the δ13C-δ15N or δ13C- δ34S niches. Such re
sults suggests that, at both sites, individuals that live close to the 
seashore have access to a wider spectrum of food resources (Carmo et al., 
2021). Indeed, anecdotal observations of prey regurgitation during 
sampling showed that individuals captured further from the seashore 
feed on insects (rove beetles) and terrestrial gastropods (slugs and 
snails), while individuals captured near the seashore incorporate marine 
prey (sand hoppers) as well as terrestrial prey in their diet, indicating 
trophic adaptability (Andolina et al., 2022), or an opportunistic feeding 
behavior (Shaiek et al., 2015). Additionally, the larger isotopic niche 
close to the seashore could be due to a greater range in isotopic values of 
the potential preys, and thus more variation at the base of the food web. 
Measurements of isotope values of preys are required to test for these 
hypotheses. Despite divergence in overall isotopic values, such dietary 
variation according to the distance to the ocean seems similar between 
the two study sites. 

5. Conclusions 

Taken together these results suggest that blood δ15N, δ13C and δ34S 
values can provide insight on habitat use, but their usefulness is site- 
specific. Indeed, one needs to be cautious with the recent history (e.g., 
marine submersion) of a site before applying this technique. Moreover, 
δ34S values may be suitable to discriminate marine habitats from 
terrestrial ones, but less useful to infer habitat use at a smaller spatial 
scale, such as those characterizing coastal wetlands. As such, we 
recommend using δ34S values as a tool to understand habitat use in 

coastal environments, assuming that history of recent marine intrusions, 
topological profiles of the sites, and land cover are well known. Indeed, 
coastal habitats are complex environmental matrix with multiple in
fluences, resulting in many different types of habitats spread over a 
restricted spatial scale. Combining the stable isotope method with other 
habitat use metrics (e.g., osmolality in the current study) seems to be 
relevant to comprehensively understand isoscapes in a site-specific 
context. 
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Charente-Maritime, the ANR PAMPAS (ANR-18-CE32-0006), the Con
trat de plan Etat-Région Econat and the Fonds Européen de 
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