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• 7 metallic trace elements among 14 
were detected in all individuals.

• Individual traits and study site were the 
main factors explaining MTE levels.

• Levels of Pb increased with body size 
and age in females but not in males.

• The intra-individual repeatability was 
high and significant for Hg, Pb and for 
Se.
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A B S T R A C T

Metallic trace elements (MTEs) constitute a major source of chemical pollution and represent a threat to aquatic 
ecosystems and organisms. Important variation in contamination may exist at a local scale in relation to the 
environment (hydrosystem, trophic ressources) and individual traits (age, sex). Heretofore, the factors influ-
encing MTEs exposure of freshwater reptiles in temperate regions are not fully understood. Freshwater turtles 
have a relatively high trophic position and a long lifespan, thus being potentially highly exposed due to bio-
accumulation and bioamplification processes. We investigated MTE blood concentrations from two populations 
of the European pond turtle (Emys orbicularis) in the Camargue wetland (France). These populations, monitored 
since 1997, differ in their habitat and exposure (irrigation versus drainage canal). In this study, we detected 7 
MTEs (Cu, Fe, Hg, Mn, Pb, Se, and Zn) which levels depended on site and individual characteristics. Hg was 
positively related to body size and age, indicating an increase of exposure in older individuals. We found dif-
ferences between males and females with the interaction with body size for Pb and Se and with age for Pb. 
Nitrogen and carbon stable isotopes varied only marginally between individuals and were poorly associated with 
MTEs concentrations, showing that trophic position might not explain MTEs contamination for these pop-
ulations. At the individual level, Hg, Pb, and Se blood values were repeatable over years. Further studies should 
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concentrate on potential ecophysiological effects to such exposure, especially since we recently evidenced that 
these populations of E. orbicularis are highly exposed to organic contaminants, which can lead to synergistic 
effects.

1. Introduction

Metallic trace elements (MTEs) constitute a significant part of envi-
ronmental pollution at a global scale (Ullrich et al., 2001; Pacyna et al., 
2007; Ali and Khan, 2019). MTEs can originate from natural sources, 
mainly volcanism and soil and rock erosion, but most of the environ-
mental contamination originates from anthropogenic sources, especially 
from industry, agriculture and gas combustion (Ullrich et al., 2001; 
Pacyna et al., 2007; Ali and Khan, 2019). In addition to their production 
from various and widespread human activities, MTEs can be transported 
by atmosphere and water, leading to an expansion of the contamination 
by leaching, transportation by soil particles and deposition of airborne 
emissions (Pacyna et al., 2007; Ullrich et al., 2001; Vareda et al., 2019). 
Therefore aquatic environments constitute sinks for MTEs, where the 
local physicochemical characteristics of the water and the sediments 
(pH, redox potential, salinity, organic matters) can influence their 
bioavailability (Deb and Fukushima, 1999; Zhang et al., 2014; Väänänen 
et al., 2018). In addition, in these ecosystems, the methylation of mer-
cury (Hg) by Fe- and sulfate-reducing bacteria enhances the uptake and 
toxicity of Hg for organisms (Driscoll et al., 2013).

All the MTEs have a potential for toxicity at certain concentrations, 
still, some of them play essential roles in the physiological functions of 
organisms, such as copper (Cu), iron (Fe), manganese (Mn), selenium 
(Se) and zinc (Zn) (Grillitsch and Schiesari, 2010). In turn, cadmium 
(Cd), mercury (Hg), lead (Pb) do not participate in molecular or physi-
ological processes and have detrimental effects on organisms (Grillitsch 
and Schiesari, 2010; Ali and Khan, 2019). These non-essential elements, 
Cd, Hg, Pb can bioaccumulate with increasing age in regularly polluted 
environments (Burger, 2008; Lavoie et al., 2013; Pain et al., 2019). 
Furthermore, Hg has the specificity to biomagnify across the trophic 
chain, leading to higher levels of concentrations for species in top tro-
phic positions (Lavoie et al., 2013). Exposure to these non-essential el-
ements potentially increases oxidative stress (Ortiz-Santaliestra et al., 
2018; Soldatini et al., 2020), endocrine system disruption (Burger, 2008; 
Tan et al., 2009; Grillitsch and Schiesari, 2010; Tartu et al., 2013; Meyer 
et al., 2013; Pain et al., 2019) and immune dysfunctions (Grillitsch and 
Schiesari, 2010). These effects could also be transgenerational as 
maternal transfer of MTEs to the eggs has been shown in different spe-
cies such as birds and reptiles (Yu et al., 2011; Hopkins et al., 2013b; Van 
Dyke et al., 2014; Ackerman et al., 2016; Nilsen et al., 2020).

Stable isotopes can be useful to assess with MTE body burden (Le 
Croizier et al., 2016) as they can inform on foraging habitat and position 
in the trophic chain (Post, 2002). Nitrogen stable isotope values (δ15N) 
increase with trophic position because of the enrichment in 15N with the 
diet in animals (Peterson and Fry, 1987; Post, 2002). In the case of 
carbon stable isotopes, the ratio between 13C and 12C (δ13C) is used to 
determine the origin of carbon by the primary producers in trophic 
chains (Peterson and Fry, 1987; Post, 2002). Thus, increased levels of Hg 
are usually related to higher levels of δ15N, illustrating the bio-
magnification of Hg, as shown in seabirds and freshwater fishes (Lucia 
et al., 2016; Liu et al., 2018; Mills et al., 2020; Jouanneau et al., 2022), 
as well as in reptiles (Bergeron et al., 2007; Hopkins et al., 2013a; 
Lemaire et al., 2021a).

Reptiles are particularly vulnerable to habitat degradation (Cox 
et al., 2022) and are considered as relevant bioindicators of pollution 
(Sparling et al., 2010; Weir et al., 2010; Ortiz-Santaliestra et al., 2018; 
Silva et al., 2020). While they are still largely understudied in ecotoxi-
cological studies, MTEs are among the most monitored contaminants for 
this group. Long lifespan, spatial fidelity and low metabolism are typical 
characteristics of chelonian (turtles and tortoises) that make them 

relevant to address long-term and local contamination of the environ-
ment. Mercury levels in different tissues exhibit strong correlation in 
turtle species, allowing the use of red blood cells from minimal invasive 
blood samples (Hopkins et al., 2013a). In addition, analysis of MTEs in 
red blood cells reflects the levels that circulate in the organism and that 
can thus impact organs and physiological functions (Hopkins et al., 
2013b). It also allows us to assess recent contamination when compared 
to scales that represent long-term and chronic exposure (Turnquist et al., 
2011).

Freshwater turtles are particularly relevant models to grasp local 
contamination of aquatic ecosystems. Previous assessments on MTEs 
levels in red-eared sliders, common snapping turtles, Iberian pond tur-
tles and European pond turtles have shown that local sources of 
contamination or environmental characteristics were important factors 
explaining MTEs levels in these species (Turnquist et al., 2011; Yu et al., 
2011; Hopkins et al., 2013b; Beau et al., 2019; Ortiz-Santaliestra et al., 
2019). However, assessing the bioaccumulation through the lifespan of 
individuals was generally restricted to comparison between age classes 
(juveniles vs. adults) in most of these studies. Long-term population 
monitoring provides a unique opportunity to address determinants of 
exposure. We studied MTEs in two neighboring populations of 
E. orbicularis in the Camargue wetland, monitored by capture-mark- 
recapture since 1976 (Olivier, 2002; Olivier et al., 2010). Only limited 
exchanges exist between these populations. The area includes several 
potential sources of heavy metal pollution: irrigation by the Rhône River 
(Dendievel et al., 2020; Ferrand et al., 2012) and the vicinity of the 
industrial zone of Fos-sur-Mer on the other side of the Rhône River 
(Austruy et al., 2019). Our long-term monitoring allows us to examine 
the influence of specific traits such as age and sex in two contrasted sites 
(irrigation vs drainage areas). Recent studies have pointed that this 
species appears to constitute a good bioindicator for chemical pollution 
(Burkart et al., 2021; Merleau et al., 2024) with local variation between 
irrigation and drainage areas. However little is known about exposure 
levels of MTEs for this vulnerable species (Beau et al., 2019). We 
determined the blood concentrations of 14 MTEs (Ag, As, Cd, Co, Cr, Cu, 
Fe, Hg, Mn, Ni, Pb, Se, V, and Zn) over three years (2018 to 2020) in 257 
individuals, allowing us to investigate inter- and intra-individual vari-
ations in MTE levels. We also measured two isotopes (δ13C and δ15N) to 
test for trophic differences during the same period. We examined the 
following questions: 

1) How the population, year and individual traits (sex, body size, age) 
shape MTE contamination level? We expect significant variation 
among habitats with higher MTE values in the drainage area. We also 
expect higher MTE concentrations in older individuals, especially for 
Hg and Pb.

2) Do stable isotopes (δ15N and δ13C) correlate with MTE? Notably, are 
the trophic position or the primary producers responsible for inter- 
individual differences in Hg and Pb levels?

3) Are MTE and stable isotope values in the blood similar among years 
at the individual level? We expect MTE levels to fluctuate within the 
individuals across the years due to the variation of environmental 
contamination.

2. Materials and methods

2.1. Population monitoring and captures

The study area is situated in the Camargue wetland, in Southern 
France in the Natural Reserve of the Tour du Valat (43◦30′N, 4◦40′E). 
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The two populations are located in an area with multiple sources of 
anthropogenic release of MTEs: the Rhône River, the industrial site of 
Fos-sur-Mer and rice paddies (Ribeiro et al., 2005; Ferrand et al., 2012; 
Austruy et al., 2019; Dendievel et al., 2020) but mainly differ by their 
hydrology (Olivier et al., 2010; Burkart et al., 2021; Merleau et al., 
2024). The Esquineau wetlands are made up irrigation canals (whose 
water is pumped from the Rhône) and associated marshes irrigated by 
this canal system (Burkart et al., 2021; Merleau et al., 2024). The second 
site, the Faïsses, is crossed by drainage canals of the Fumemorte basin, 
which irrigate the marshes in this area (Burkart et al., 2021; Merleau 
et al., 2024). Using funnel traps or by hand, E. orbicularis were captured 
in canals and marshes from the end of April to the end of July in 2018 
and 2019 and from the beginning of May to the beginning of August in 
2020. As part of a long-term capture-mark-recapture program 
(1976–2024), turtles are identified individually by notching the mar-
ginal and nuchal scales (Ficheux et al., 2014; Olivier, 2002). We checked 
the traps daily and after being sampled in the laboratory of the Tour du 
Valat, individuals were released on their exact site of capture (Fay et al., 
2023; Olivier et al., 2010). Captures of this protected species were 
authorized by French Departmental Authorities (Permits: DREAL Cerfa 
13616-01; N◦13-2020-03-27-007).

2.2. Blood sampling

From 2018 to 2020, we collected 410 blood samples from 257 in-
dividuals (mass > 300 g). We collected 1.5 mL (< 1 % of the individual 
body mass) from the dorsal coccygeal vein using a previously heparin-
ized Terumo syringe and a 25G needle. We centrifuged the samples to 
retrieve red blood cells separately from plasma and the samples were 
then frozen at − 18 ◦C until processing at the LIENSs laboratory of La 
Rochelle University (France). 143 individuals were sampled once, 77 
over two years and 37 over the three years of monitoring. Two in-
dividuals were sampled twice in the same year in 2018. These samples 
were included in the general analyses, but these two individuals were 
not included in intra-individual variation analysis. Following the EU 
Directive 2010/63/EU requirements for animal experiments, the blood 
sampling procedure was assessed by an Ethic Committee (Permit: 
APAFIS #17899-201812022345423 v2).

2.3. Variables collected

2.3.1. Morphology
Using a precision scale (Mettler Toledo PB3001-S), turtles were 

weighed to the nearest g in the laboratory and dorsal shell length 
(hereafter “carapace length”) was measured with a caliper (cm) (Olivier 
et al., 2010). We estimated the body condition index with the residuals 
of a linear regression of the log-transformed mass against the log- 
transformed carapace length with the addition of sex as a control vari-
able. As described by Castanet (1988) and Olivier (2002), we counted 
the number of growth rings on the plastron scutes to determine the age 
in individuals <5 years old. The age was known for 128 individuals 
including 78 females (age range: 5–43 years) and 50 males (age range: 
4–25 years). The gravidity of the females was assessed by pelvic 
palpation (Olivier, 2002; Beau et al., 2019). We recorded the presence of 
the eggs and the number of palpations performed on a female by capture 
season.

2.3.2. Metallic trace elements analyses
Red blood cell aliquots were freeze-dried for 48 h and homogenised. 

As described in Lemaire et al. (2022), total Hg analyses were performed 
on aliquots weighing between 0.83 and 2.10 mg using an atomic ab-
sorption spectrometer AMA-254 (Advanced Mercury Analyser-254; 
Altec) with a limit of detection (LoD) of 0.1 ng. At least two replicates 
were analysed for each sample until the relative standard deviation was 
<10 %. Validation of the method was obtained by the analysis of 
certified reference material (CRM) TORT-3 (Lobster hepatopancreas 

from the National Research Council of Canada (NRCC) with certified Hg 
value: 0.292 ± 0.022 μg.g− 1 dw) at the beginning of the analyses and 
CRM DOLT-5 (Dogfish liver from the NRCC, with certified Hg value: 
0.44 ± 0.18 μg.g− 1 dw). Following the protocol described in Bustamante 
et al. (2008), all the other trace elements (Ag, As, Cd, Co, Cr, Cu, Fe, Mn, 
Ni, Pb, Se, V, and Zn) were analysed with Inductively Coupled Plasma 
(ICP) 5800 VDV - Agilent Technologies and Mass Spectrometry (Thermo 
Fisher Scientific Series II ICP-MS). Recoveries for Hg were 102.0±1.8 % 
and 96.6±1.2 % for TORT-3 and DOLT-5, respectively. Recoveries for 
the other elements varied between 94 % and 109 % for TORT-3 and 
DOLT-5. The LoD for the different elements analysed by ICP were 0.01 
(Ag, Cd, Co, Cr, and Pb), 0.02 (Ni), 0.05 (Cu, Mn and Se), 0.1 (As), 0.2 
(V) and 2 (Fe and Zn) μg.L− 1. Trace element concentrations were further 
expressed in μg.g− 1 dry weight (dw). Hematocrit was not collected in 
this study but the average values for E. orbicularis are usually 22–23 % 
(Yilmaz and Tosunolu, 2010).

2.3.3. Stable isotope analyses
Carbon and nitrogen stable isotopes were quantified in aliquots of 

0.3 to 0.5 mg of freeze-dried red blood cells. The aliquots were processed 
with an elemental analyser (Flash 2000 or EA Isolink, Thermo Scientific) 
coupled to a mass spectrometer (Delta V Plus with Conflo IV Interface, 
Thermo Scientific). Results were expressed in the δ unit notation as 
deviations from standards (Vienna Pee Dee Belemnite for δ13C and N2 in 
air for δ15N) following the formula: δ13C or δ15N = [(Rsample/Rstan-
dard) - 1] × 1000, where R is 13C/12C or 15N/14N, respectively. Two- 
point calibration was provided by standard of caffeine (USGS-61 & 
USGS-63). The analytical precision was < 0.10 ‰ for δ13C and < 0.15 ‰ 
for δ15N. We were able to determine stable isotope values of carbon and 
nitrogen in all samples but two.

2.4. Statistical analyses

We conducted all statistical analyses with R software (4.2.2) and the 
following packages lme4 (Bates et al., 2015), emmeans (Lenth et al., 
2023), DHARMa (Hartig, 2016) and rptR (Stoffel et al., 2017). Models 
were progressively reduced through stepwise elimination of non- 
significant variables (p > 0.05). Statistical values provided for non- 
significant variables are the one obtained in the last step before their 
removal from the models. Pairwise comparisons were conducted using 
Tukey post hoc tests in the emmeans package (Lenth et al., 2023).

2.4.1. Variation in ETM
We used LMMs (Linear Mixed Models) with individual identity as a 

random effect to control for repeated sampling of individuals. We tested 
the effects of year, site, sex, carapace length, body condition, and the 
interaction site × year on the concentration of Cu, Fe, Hg, Mn, Pb, Se and 
Zn. Se and Zn concentrations were log-transformed to best fit the model 
assumptions. Because age and body condition were strongly correlated, 
we also conducted the same LMMs by testing the effect of age on the 
subset of known-aged individuals (n = 211). We also tested the effect of 
the 7 MTE abovementioned on the body condition, used as the response 
variable. The lme4 package (Bates et al., 2015) was used and model 
assumptions were checked by examining residual plots.

2.4.2. Variation in isotopic levels
We used LMMs (Linear Mixed Models) with individual identity as a 

random effect to control for repeated sampling of individuals. We tested 
the effects of year, site, sex, carapace length, body condition, and the 
interaction site × year on the concentration of δ13C and δ15N. Model 
assumptions were checked by examining residual plots.

2.4.3. Intra-individual variation analysis
To assess variations in individuals sampled multiple years, we 

compared groups of individuals sampled by pair of years using paired t- 
test and one-way repeated measures ANOVA for the individuals sampled 
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during three years. The “repeatability” is thereafter defined by the sta-
bility of the intra-individual measured parameters over time. We per-
formed individual repeatability tests to assess the intra-individual 
variation between years, using the package rptR (Stoffel et al., 2017).

3. Results

3.1. Determinants of MTE concentrations

Among the 14 metallic trace elements examined, 7 were above the 
limit of detection: Cu, Fe, Hg, Mn, Pb, Se, and Zn, and included in further 
analyses. Ag, As, Cd, Co, Cr, Ni, and V were below the limit of detection 
in all or >80 % of the samples analysed in this study. We found an effect 
of population on the concentrations of Hg, Pb, and Zn with higher 
contamination in Esquineau for all three elements (Table 1, Fig. 1). 
However the effect for Pb concentrations were mainly due to a few in-
dividuals in Esquineau, notably one individual having the maximum 
concentration of 1 μg.g− 1 dw. The concentrations of Se were higher in 
Esquineau in 2018 but not in 2019 and 2020 (Table 1, Fig. 1). We did not 
observe differences between the two sites for the other MTEs (Cu, Fe, 
and Mn) (Table 1). We found an effect of the year of capture for each 
MTE, but the differences between years depended on the MTE. Post-hoc 
tests showed that Cu, Fe, Hg, Se, and Zn concentrations were the highest 
in 2018 compared to the two other years. Fe, Se, and Zn levels were also 
higher in 2019 compared to 2020. Mn and Pb levels were significantly 
lower in 2018 than in 2019 and 2020. Cu levels were significantly higher 
in 2019 compared to the two other years. Mean concentrations 
depending on the year and the site are presented in Supplementary 
Material.

We found effects of body size on Hg concentrations that were posi-
tively correlated with carapace length whereas those of Mn were 
negatively correlated (Table 1, Fig. 2A, B). We found an interaction 
between body size and sex only for Pb; while Pb concentrations signif-
icantly increased with size for females they decreased for males 
(Fig. 2C). Se levels increased with body size in males but not in females 
(Fig. 2D). Males had higher Cu levels than females (Table 1). When 
considering known-aged individuals, Fe and Hg concentrations 
increased in older individuals (Fig. 3A, B). Older females had higher Pb 
concentrations whereas older males tended to have lower Pb ones 
(Fig. 3C). This effect was still observed when retrieving older females 
and considering the ages of the two sexes. We did not find an effect of 
age on Cu, Mn, Se, and Zn concentrations. No MTE was related to the 
palpation of eggs in females. Body condition as response variable was 
not correlated with MTE concentrations (all p value >0.09).

3.2. Relation with stable isotopes

We were able to determine stable isotope values of carbon and ni-
trogen in all samples but two. We observed very few variations in stable 
isotope values: δ13C ranged from − 29.19 to − 23.45 ‰ (mean ± SE =
− 27.27 ± 0.99 ‰) and δ15N ranged from 6.23 to 12.59 ‰ (mean ± SE =
8.59 ± 0.68 ‰).

We found significant but very slight differences for the δ13C values 
between the two populations (Fig. 4A, LMER model: χ2 = 9.417, df = 1, 
p = 0.002; mean ± SE: − 27.45 ± 0.81 ‰ and − 26.97 ± 1.18 ‰ for 
Esquineau and Faïsses, respectively) and between females and males 
(LMER model: χ2 = 7.858, df = 1, p = 0.005; mean values: − 27.41 ±
0.94 ‰ and − 27.05 ± 1.02 ‰, respectively). Individuals' age did not 
influence stable isotope values. No difference in δ15N values was found 
between the sites of capture (Fig. 4B, LMER model: χ2 = 2.73, df = 1, p =
0.098). δ15N values tended to be higher in males (mean ± SE = 8.68 ±
0.69 ‰) than females (mean ± SE = 8.55 ± 0.68 ‰) but the difference 
was marginal (LMER model: χ2 = 3.7, df = 1, p = 0.054). We found a 
correlation between Hg and δ13C (Pearson correlation: r = − 0.49, p =
0.004). Any other correlation between MTEs and stable isotopes was 
nonsignificant.

Table. 1 
Effects of environmental and individual variables on the levels of metallic trace 
elements in the red blood cells of Emys orbicularis in two populations (site) of the 
Camargue wetland (France). Models were selected using a top-to-bottom 
approach, based on a general model: MTE ~ site*year + sex*scale(CL)+ body 
condition or MTE ~ site*year + sex*age for the subset of known-aged in-
dividuals. For each effect tested we present (1) if selected in the final model: the 
observed significant effect (in bold) or (2) if removed: the level before exclusion.

All (410 samples) Known-aged (211 samples)

chi2 df p value chi2 df p value

A. Hg
Year 9.123 2 0.01 8.943 2 0.011
Site 68.246 1 < 0.001 12.863 1 < 0.001
Year × site 1.5587 2 0.458 4.929 2 0.085
Body condition 2.138 1 0.144 _ _ _
CL (scaled) 7.306 1 0.007 _ _ _
Sex 0.454 1 0.501 0.821 1 0.365
Sex × CL(scaled) 0.81 1 0.368 _ _ _
Age _ _ _ 6.395 1 0.011
Sex × age _ _ _ 0.353 1 0.552

B. Pb
Year 13.058 2 0.001 6.47 2 0.04
Site 4.255 1 0.04 0.297 1 0.585
Year × site 0.936 2 0.626 4.35 2 0.114
Body condition 2.296 1 0.13 _ _ _
CL(scaled) 15.451 1 < 0.001 _ _ _
Sex 49.892 1 < 0.001 0.671 1 0.413
Sex £ CL(scaled) 8.979 1 0.003 _ _ _
Age _ _ _ 16.807 1 < 0.001
Sex £ age _ _ _ 10.67 1 0.001

C. Se (log)
Year 50.084 2 < 0.001 34.166 2 < 0.001
Site 9.708 1 0.002 4.591 1 0.032
Year £ site 17.959 2 < 0.001 4.485 2 0.106
Body condition 1.013 1 0.314 _ _ _
CL(scaled) 2.379 1 0.123 _ _ _
Sex 25.756 1 < 0.001 13.389 1 < 0.001
Sex £ CL(scaled) 7.491 1 0.006 _ _ _
Age _ _ _ 1.325 1 0.25
Sex × age _ _ _ 2.004 1 0.157

D. Cu
Year 11.674 2 0.003 10.371 2 0.006
Site 2.078 2 0.15 0.4566 1 0.499
Year × site 2.377 2 0.305 1.062 2 0.588
Body condition 1.64 1 0.2 _ _ _
CL (scaled) 0.051 1 0.821 _ _ _
Sex 19.187 1 < 0.001 13.846 1 < 0.001
Sex × CL(scaled) 0.293 1 0.588 _ _ _
Age _ _ _ 1.418 1 0.234
Sex × age _ _ _ 0.736 1 0.391

E. Fe
Year 95.08 2 < 0.001 57.792 2 < 0.001
Site 0.162 1 0.687 1.15 1 0.284
Year × site 5.387 2 0.068 0.153 2 0.926
Body condition < 0.001 1 0.981 _ _ _
CL(scaled) 2.624 1 0.11 _ _ _
Sex 0.209 1 0.647 0.932 1 0.334
Sex × CL(scaled) 0.007 1 0.932 _ _ _
Age _ _ _ 4.748 1 0.029
Sex × age _ _ _ 0.584 1 0.445

G. Mn
Year 27.46 2 < 0.001 11.946 2 0.003
Site 1.902 1 0.168 0.013 1 0.908
Year × site 0.021 2 0.989 4.776 2 0.092
Body condition 0.323 1 0.569 _ _ _
CL (scaled) 7.294 1 0.007 _ _ _
Sex 1.613 1 0.204 2.567 1 0.109
Sex × CL(scaled) 1.442 1 0.229 _ _ _

(continued on next page)
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3.3. Repeated measures and individual variation

Individuals sampled during the three years (n = 37) exhibited sig-
nificant variations in their Fe and Mn levels (Fe2018-2019-2020: ANOVA, 
F(2,108) = 11.242, p < 0.001; Mn2018-2019-2020: ANOVA, F(2,108) = 4.771, 
p = 0.01). Individuals sampled in 2018 and 2019 (n = 20) exhibited 
higher concentrations of Pb in 2019 (paired t-test: t = − 3.02, df = 19, p 
= 0.007). Individuals sampled in 2019 and 2020 (n = 29), and in 2018 
and 2020 (n = 28) exhibited higher Fe and Se concentrations in 2019 
and 2018 than in 2020 (paired t-tests: Se2019-2020, t = 3.018, df = 28, p <

0.01; Se2018-2020, t = 2.86, df = 27, p < 0.01; Fe2019-2020, t = 2.951, df =
28, p < 0.01; Fe2018-2020, t = 4.853, df = 27, p < 0.001). Three MTEs 
remained statistically constant over the years: Cu, Hg, and Zn.

We found high intra-individual repeatability across time for Hg, Pb, 
and Se for each pair of years or for all three years (Fig. 5). The repeat-
ability coefficient was respectively between 0.6 and 0.9; 0.6 and 0.8; 
0.57 and 0.84 depending on the pairs of years (see Supplementary 
Material). In turn, the intra-individual repeatability was low and 
nonsignificant for Cu and Zn, as well as for Fe, except in 2018–2019, and 
Mn except for 2018–2020 and 2018–2019-2020.

4. Discussion

Despite the ubiquity and toxicity of MTEs, factors influencing their 
levels in wild populations are still insufficiently understood, notably 
freshwater turtle species (but see Turnquist et al., 2011; Yu et al., 2011; 
Hopkins et al., 2013a; Guillot et al., 2018; Ortiz-Santaliestra et al., 
2019). Our study is the first to characterize a large set of MTEs, including 
both essential and non-essential elements, in the blood of E. orbicularis 
and to investigate the environmental and individual factors governing 
circulating levels. We were able to detect 7 MTEs out of the 14 that were 
analysed. Most of them were essential trace elements (Cu, Fe, Mn, Se, 
and Zn). Variation in MTEs were primarily driven by individual char-
acteristics (age, sex) and population.

4.1. Occurrence of trace elements

Two trace elements of major concern were detected in all the sam-
ples: Hg and Pb. Blood levels of Hg in our study were in the range of the 
concentrations found in other freshwater reptiles. In several freshwater 
turtle species, studies found average blood Hg levels ranging from 0.02 
to 4.35 μg.g− 1 dw (Hopkins et al., 2013a; Meyer et al., 2014; Slimani 
et al., 2018; Van Dyke et al., 2017). Similar concentrations were found in 
whole blood of wild caimans, from 0.07 to 2.19 μg.g− 1 dw (Lemaire 
et al., 2021a, 2022). However, our results were below the blood con-
centrations of populations of Mauremys leprosa (3.37 to 8.83 μg.g− 1 dw) 
living in a region with former mine activities (Ortiz-Santaliestra et al., 
2019) and Chelydra serpentina (0.05 to 24.95 μg.g− 1 dw) living down-
stream a former industrial Hg releasing (Hopkins et al., 2013a). Previous 
studies in Brenne, France showed two or three fold higher levels in claws 
of E. orbicularis compared to our results (Beau et al., 2019; Guillot et al., 
2018). This difference, also observed in other species (Schneider et al., 
2011) could be explained by the high bioaccumulation of Hg in kerati-
nized tissues due to the affinity of their protein to metalloid compounds 
(Grillitsch and Schiesari, 2010). Pb contamination is an issue in the 
Camargue wetlands due to the use of lead shots for hunting for decades 
(Hoffmann, 1960; Pain et al., 2019). However, little oxidation of shots 
seems to occur (Pain, 1991) and Pb was rarely detected in water analyses 
done by the National Reserve of Camargue (Cheiron, 2019; Cheiron and 
Bricault, 2020, 2021) probably explaining the similar levels to the ones 
of freshwater reptiles living in non-contaminated areas (Ortiz-Santa-
liestra et al., 2019; Lemaire et al., 2022). Interestingly, As, Co, Ni, and V 
in the blood of E. orbicularis were below the detection limit of the 
method although these MTEs were detected in water samples from the 
main drainage canal of the area in which the canals of the site of Faisses 
flow (Cheiron, 2019; Cheiron and Bricault, 2020, 2021). Considering 
organotropism, levels of certain MTEs could be higher in internal organs 
in E. orbicularis (e.g., Cd in the kidneys) than was what found in this 
study, especially for trace elements non-detected here.

4.2. Variation among site and year of capture

We found that Hg, Pb, Se, and Zn varied among the two populations 
with Esquineau showing the highest levels for each of these MTEs, 
except in 2020 for Se. A difference in trophic position between these two 
populations is unlikely to explain the difference. Using δ15N to assess the 

Table. 1 (continued )

All (410 samples) Known-aged (211 samples)

chi2 df p value chi2 df p value

Age _ _ _ 0.386 1 0.535
Sex × age _ _ _ 3.279 1 0.07

H. Zinc (log)
Year 27.058 2 < 0.001 22.458 2 < 0.001
Site 12.576 1 < 0.001 3.531 1 0.06
Year × site 1.466 2 0.851 0.898 2 0.638
Body condition 0.146 1 0.702 _ _ _
CL(scaled) 0.517 1 0.472 _ _ _
Sex 2.099 1 0.147 0.124 1 0.634
Sex × CL(scaled) 3.276 1 0.07 _ _ _
Age _ _ _ 0.018 1 0.892
Sex × age _ _ _ 0.134 1 0.714

Footnotes: Results of linear mixed models (LMM) for every MTE, with log- 
transformed data for Se and Zn. Known-aged: subset of individuals of known 
age. CL: carapace length. The significant variables retained in the final model are 
in bold font.

Fig. 1. Variation in Hg (A), Pb (B), Se (C), and Zn (D) concentrations (μg.g− 1 

dw) in red blood cells (RBC) of the individuals sampled in the Camargue 
wetland, France, among the two populations: Esquineau and Faïsses, n = 410 (* 
and **: significance obtained from the LMM models).
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trophic level we found little variation (coefficient of variation: 8 %) and 
individuals sampled were distributed in one to two trophic levels only 
(Post, 2002). Although environmental levels were not measured in our 
study, several hypotheses can be made. Esquineau site is made up of 
irrigation canals and marshes irrigated by them. Thus, the water irri-
gating the wetlands of this site is directly pumped from the Rhône River, 
8 km upstream. The difference in MTE levels is probably due to the 
exposure and the contamination of the site ecosystem by the Rhône 
River which flows through a valley with many industries upstream of the 
pumping point (Cheiron, 2019; Cheiron and Bricault, 2020, 2021). 
Regarding Hg levels, another hypothesis could explain that turtles from 
Esquineau exhibited higher levels: in this site, marshes have more dry- 
out periods, which can increase Hg methylation in marshes (Feng 
et al., 2014). E. orbicularis exhibited higher Hg levels in their claws in 
sites that had been year-long drained the latest (Beau et al., 2019). 
Overall these results contrast with previous findings on legacy organic 
pollutants and pesticides in the same populations where the drainage 
site is the more exposed (Burkart et al., 2021; Merleau et al., 2024). The 
higher Pb levels at the Esquineau site could also be due to its proximity 
to a communal hunting ground where hunters do not comply with 
regulations on the use of non-toxic ammunition (Mondain-Monval et al., 
2017, 2020).

We found an effect of the year for every trace element quantified. 
Differences between years were generally limited (coefficients of vari-
ation ranged from 2.2 % for Fe to 17.6 % for Se). These variations were 
supported when considering individuals with multiple measures across 
years. Therefore, they illustrate temporal variations in individual 
exposure, and could be due for instance to potential variations in 

environmental levels to the primary producers of the trophic chain, as 
explained by the inter-annual variations of δ13C. However, considering 
the low turn-over of red blood cells in reptiles, measured trace element 
concentrations probably reflect exposure over several months (Stacy 
et al., 2011).

4.3. Influence of sex, body size and age

Several MTEs (Hg, Mn, Pb, and Se) were positively correlated with 
body size, likely because of a higher exposition through food, with larger 
individuals expected to consume more (Shine et al., 1998). The corre-
lation between carapace length and levels of these MTEs may reflect 
bioaccumulation although blood levels result of recent integration 
rather than accumulation over several years (Grillitsch and Schiesari, 
2010). We found no relation between ETM and individual body condi-
tion. Previous studies found an adverse effect of heavy metals, and Hg in 
particular, in reptiles (Finger et al., 2017; Nilsen et al., 2017). In 
Mauremys leprosa, populations with average Hg blood concentrations 
similar to ours showed a greater body condition compared to those with 
higher levels of Hg (8.83 ± 1.88 μg.g− 1 dw) (Ortiz-Santaliestra et al., 
2019). In birds, a recent meta-analysis revealed that Hg burden and 
body condition are essentially not related (Carravieri et al., 2022). 
However, our results are consistent with a previous study that did not 
find a relationship between Hg burden in claws and body condition in 
E. orbicularis (Beau et al., 2019).

We found a strong effect of age on Hg and Pb concentrations. Our 
results rely on red blood cells, a dynamic tissue and thus give comple-
mentary information on the exposure to trace elements during the life of 

Fig. 2. Relationship between Hg (A), Mn (B), Pb (C), and Se (D) concentrations (μg.g− 1 dw) in red blood cells (RBC) and carapace length (mm, A, B) or the carapace 
length in interaction with the sex (C, D) of the individuals sampled in the Camargue wetland, France (dots: data, lines: predictions of the mixed-effect models 
including (A) population, the sampling year and the CL, R2 conditional = 0.86, n = 410; (B) the sampling year and the CL, R2 conditional = 0.44, nFemale = 248, nMale 
= 162).
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the individuals. When blood levels of Hg increase, this element is likely 
deposited in developing keratinized tissues such as scute layers and 
claws (Beau et al., 2019; Villa et al., 2019) and thus lower the blood 
levels. Older individuals having higher circulating levels of Hg and Pb 
suggest that these individuals keep being more exposed, presumably 
through feeding. Our long-term study systems allowed to show for the 
first time that older females are more contaminated than older males, 

and even though our dataset is limited for old males (maximum age for 
males: 25 years), this effect remained significant when considering fe-
males under 25 years. The effect of age was also detected for Fe and 
could be explained by a higher number of red blood cells in older in-
dividuals. This hypothesis should be tested in further studies using he-
matocrit values. Increasing concentrations in larger and older females 
compared to males could be explained by differential absorption be-
tween sex, or linked to the reproduction.

We found higher Pb concentrations in females than males and this 
difference increased with the individual ages. This result was counter-
intuitive and although not known for Pb in freshwater turtles, has been 
already shown in other reptiles (Burger et al., 2004; Ciliberti et al., 
2011). No differences in feeding habits between males and females were 
found in some populations of E. orbicularis (Çiçek and Ayaz, 2011; Ziane 
et al., 2020), including in the Camargue (Ottonello et al., 2005) but 
(Ducotterd et al., 2020) showed that males and females consumed 
different prey species. Even if little is known about the toxicokinetics of 
trace elements in reptiles, the higher concentration of Pb in females 
could also result from a difference in physiology, notably in the ab-
sorption of the trace elements. We also observed a significant difference 
between males and females for Cu, however the means for each sex were 
extremely close. In turn, we did not observe sexual differences in the 
concentration of Hg, as previously reported in Brenne for this species 
(Guillot et al., 2018; Beau et al., 2019). Maternal transfer of trace ele-
ments in the eggs has been shown in reptiles (Nilsen et al., 2020; Lemaire 
et al., 2021b) including freshwater turtles (Guirlet et al., 2008; Yu et al., 
2011; Hopkins et al., 2013a,b). However, this potential maternal 
transfer is not always a sufficient excretion pathway to observe differ-
ences in trace element concentrations between males and females 

Fig. 3. Relationship between Hg (A), Fe (B), and Pb (C) concentrations (μg.g− 1 dw) in red blood cells (RBC) and the age (year, A, B) or the age in interaction with the 
sex (C) of the individuals of known-age sampled in the Camargue wetland between 2018 and 2020 (dots: data, lines: predictions of the mixed-effect models including 
(A) population, the sampling year and the age, R2 conditional = 0.83, n = 211; (B) the sampling year and the age, R2 conditional = 0.45, n = 211; (C) the sampling 
year and the interaction of the sex and the age, R2 conditional = 0.71, nFemale = 135, nMale = 76).

Fig. 4. Variation in δ13C (A) and δ15N (B) in red blood cells (RBC) of the in-
dividuals sampled in the Camargue wetland among the two populations: 
Esquineau and Faïsses, n = 409 (**: significance obtained from the 
LMM models).
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(Schneider et al., 2011; Yu et al., 2011; Lemaire et al., 2021a).
Essential MTEs (Cu, Fe, Mn, and Zn) were less impacted by individual 

factors than Hg and Pb, which can be explained by a highly controlled 
regulation of these MTEs. Since they are involved in biological mecha-
nisms, there are pathways of regulation, involving different components 
like metallothioneins to help maintain optimal concentrations of these 
MTEs for cell physiology (Deb and Fukushima, 1999). Fe was the MTE 
with the lower variation coefficient (4.4 %), which probably reflects a 
high regulation due to its crucial role in the production of hemoglobin. 
Se exhibited the highest coefficient of variation among the samples (92 
%), which raised some concern on its potential impacts. In several 
Vertebrate species, including reptiles, seabirds, and mammals, Se has 
been shown to mitigate the toxic effects of Hg (Cuvin-Aralar and Fur-
ness, 1991; Manceau et al., 2021). However, high dietary exposure to Se 
(15 to 30 μg. g− 1) in the yellow-bellied slider Trachemys scripta scripta is 
correlated with detrimental effects on several parameters such as red 
blood cells, immunity (Haskins et al., 2017). In the American alligator 
Alligator mississipiensis, dietary exposure to 1000 and 2000 μg.g− 1 lead to 
glucocorticoid release and decreased body condition (Finger et al., 
2017, 2018).

4.4. Patterns of covariation and individual repeatability

No significant correlations were found between MTEs except for Hg 
and δ13C. This correlation is not common but was also found in fish 
species (Ofukany et al., 2014) or seabirds (e.g. (Binkowski et al., 2021; 
Carravieri et al., 2014). It might be explained by a slight difference in Hg 
levels in primary producers and differences in foraging strategies, as 
E. orbicularis exhibit a very varied diet (Ducotterd et al., 2020). In large 
aquatics ecosystems, differences in carbon stable isotopes have been 
found between littoral and pelagic food webs (France, 1995). δ13C is a 
more sensitive measure than δ15N, only a change of 1 ‰ being necessary 
to change the level of primary producers. We would have expected a 
correlation between Hg and δ15N considering the biomagnification 
property of Hg, but the variation was limited in δ15N (6.23–12.59 ‰).

Our study allowed us to access the intra-individual variations of the 
levels of MTEs along time. No variation between years was found for Cu, 
Hg, and Zn in the subset of individuals that were sampled multiple times. 
We also found high and significant repeatability across years for Hg 
showing that these individuals tended to be exposed consistently to Hg 
over time. The intra-individual repeatability was also high and signifi-
cant for Pb and for Se. At the group scale, MTEs values could be different 
enough to be statistically detectable; yet the concentrations were similar 
throughout the years for most individuals, exposing them to potential 

chronic effects. Even if concentrations were rather low, being exposed to 
such levels of Hg and Pb for several decades could be detrimental to the 
individuals. Fe levels seemed affected by external factors that impact 
individuals globally, illustrating the highly conserved nature of the 
regulation of this element (Kaplan and Ward, 2013). Cu and Zn, on the 
other side, seemed to be less highly regulated than Fe, as we found no 
difference in their levels in groups sampled for a pair of years but low 
and non-significant repeatability at the individual scale.

5. Conclusion

We demonstrate that habitat plays a role in exposure to the most 
toxic MTEs (Hg and Pb) with the irrigation site exhibiting the highest 
levels. Our results also highlight the effect of individual characteristics 
(size, sex, age) on MTE blood burden, however MTE contamination were 
poorly related to stable isotope values. Our work is also the first to detect 
a differential effect of the sex depending on the size and the age on the 
circulating levels of Pb in a freshwater turtle species. Remarkably, blood 
levels of Hg, Pb, and Se are highly reproducible at the intra-individual 
level over sampled years. Our study unequivocally supports the need 
of long-term population monitoring to better understand i) the temporal 
intra-individual variation of MTE burden and ii) the influence of age on 
different MTEs. Future work should focus on the toxicokinetics of MTEs 
in E. orbicularis, and on the effects of such exposure, particularly on 
physiology, reproduction and population dynamics.
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Camargue (Société nationale de protection de la nature – Réserve Naturelle 
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