Influence of food (ciliate and phytoplankton) on the trophic transfer of inorganic and methyl-mercury in the Pacific cupped oyster *Crassostrea gigas*

Marc Metian, Simon Pouil, Christine Dupuy, Jean-Louis Teyssié, Michel Warnau, Paco Bustamante

International Atomic Energy Agency, Environment Laboratories, 4a Quai Antoine 1er, MC-98000, Principality of Monaco, Monaco

Littoral Environnement et Sociétés (LIENS), UMR 7266, CNRS-La Rochelle Université, 2 rue Olympe de Gouges, F-17000, La Rochelle, France

Diet is an important route of mercury (Hg) uptake in marine organisms. Trophic transfer of Hg throughout the food webs may be influenced by various factors, including diet and Hg speciation. Bivalves such as oysters are widely used as bioindicators of trace element pollution such as Hg. Nevertheless, our current knowledge regarding their ability to accumulate Hg from their diet is mainly based on experiments performed using phytoplankton. In their natural environment, oysters feed on a variety of food items including ciliates, detritus, in addition to phytoplankton. The present study aimed at examining the influence of diet composition on the trophic transfer of inorganic Hg (iHg) and methyl-mercury (MeHg) in the Pacific cupped oyster *Crassostrea gigas*. The pulse-chase feeding method was used with two radiolabeled food items: a heterotrophic protist (*Uronema marinum*) and a phytoplanktonic diatom (*Thalassiosira pseudonana*). Depuration of dietary Hg in the oysters was followed for 50 d. Kinetic parameters including assimilation efficiency (AE) and efflux rate constant (ke) were calculated. Our results showed that oysters fed on ciliates assimilated 96 ± 1% and 31 ± 2% of the ingested MeHg and iHg, respectively whereas these elements were similarly assimilated in the oysters fed on phytoplankton (78 ± 3% and 86 ± 4% for MeHg and iHg, respectively). Mercury assimilation in oyster is thus diet dependent (significant differences in AE, p < 0.05), metal species-dependent and likely resulting from variations in Hg bioavailability in the two food items tested and a gut passage time-dependent of the ingested matrix.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Mercury (Hg) is a persistent global pollutant released in the coastal environment, mainly released by anthropogenic activities, including combustion of fossil fuels and gold mining (UNEP, 2013; Sundseth et al., 2017). Estimated annual anthropogenic Hg emissions were about 2390 tonnes in 2015 (Streets et al., 2019). Mercury is a toxic, non-essential element that can be highly bioaccumulated by marine biota and biomagnified along the aquatic food webs, especially in its methylmercury form (MeHg; see e.g., Riisgård and Hansen, 1990; Dijkstra et al., 2013; Eagles-Smith et al., 2018; Harding et al., 2018).

Mercury bioaccumulation processes have been well studied in laboratory conditions in low trophic level aquatic organisms, especially in bivalves such as Mytilidae (Pan and Wang, 2011; Amachree et al., 2014; Raftopoulou and Dimitriadis, 2011), Ostreidae (Cunningham and Tripp, 1973; Denton and Burdon-Jones, 1981; Pan and Wang, 2011), and Pectinidae (Metian et al., 2008a,b; Pan and Wang, 2011), acting as important vectors for “pumping” Hg to higher trophic levels (Pan and Wang, 2011).

Although bivalves are also exposed to Hg from the water and the sediment (Gagnon and Fisher, 1997; Kidd et al., 2011), previous laboratory studies carried out in the 1970s highlighted that bivalves have substantial capacity to accumulate Hg from their diet especially in MeHg form (e.g., Cunningham and Tripp, 1975; Blackmore and Wang, 2004; Pan and Wang, 2011). Assimilation efficiency (AE)
of inorganic Hg (iHg) in bivalves is variable and ranges from 5 to 60% (Fowler et al., 1978; Riisgård and Hansen, 1990; Blackmore and Wang, 2004; Metian et al., 2008b; Pan and Wang, 2011). Some studies have shown in different bivalves that MeHg is more readily bioavailable than iHg: AE of MeHg is higher than that of iHg by a factor 1.5 to 4.0 (MeHg AE = 50–95%; e.g., Fowler et al., 1978; Blackmore and Wang, 2004; Pan and Wang, 2011). These observations are valuable for interpreting the trophic transfer of iHg and MeHg from the base of food webs. Nevertheless, interpreting field data based on laboratory findings has some limitations. Indeed, the experimental characterization of the trophic transfer of Hg in bivalves has mainly been studied using phytoplanktonic species as diet, which does not fully reflect the diversity of the natural diet of bivalves in the wild.

In their natural environment, bivalves are generally opportunistic, omnivore filter-feeders feeding on different prey: phytoplankton, resuspended benthic microalgae, detritus or other food items available in their habitats. Thus, experimental studies highlighted the ability of mussels (Mytilus edulis and Perna viridis) to assimilate zooplanktonic rotifers in addition to phytoplankton and found that this food source can be an important part of the mussel’s energy budget (Wong et al., 2003a, 2003b). Diet of oysters (Ostrea edulis and Crassostrea gigas) includes phytoplankton, heterotrophic protists, large bacteria, fungi and detritus (Heral, 1990; Dupuy et al., 1999). Oysters retained efficiently particles >4 μm (Barillé et al., 1993). Thereby, >4 μm autotrophic protists (primary producers) are directly retained by benthic bivalves. When primary producers are lower than <4 μm of size, heterotrophic protists, like ciliates, are a trophic link between these small primary producers (<4 μm) and benthic bivalves (Dupuy et al., 1999). These authors experimentally demonstrated that 94% of ciliates and 86% of flagellates (size between 4 and 72 μm) were retained and ingested by the Pacific cupped oyster Crassostrea gigas.

Previous experimental works have shown the importance of diet in the trophic transfer of trace elements in bivalves (e.g., Wang and Fisher, 1996; Lee and Luoma, 1998; Metian et al., 2008a). Food quality was shown to have a major influence on trace element assimilation. For example, Wang and Fisher (1996) report that in mussels fed with seven different algal diets, the AEs of Ag varied by a factor 9 (3.8 – 33.8%) according to the diet. Similar findings were shown for Ag, 241Am, Co, Cd, Cr, Mn, and Zn in several bivalve species including clams, mussels, oysters and scallops (e.g., Lee and Luoma, 1998; Chong and Wang, 2000; Metian et al., 2008a, Hédouin et al., 2010). Although such effects have not yet been demonstrated for assimilation of Hg, Pan and Wang (2004) suggested that different food sources might lead to different bioavailability of Hg for bivalves.

The main objective of the present study was to investigate the influence of the diet composition on the trophic transfer of inorganic Hg (iHg) and methyl Hg (MeHg) in the Pacific cupped oyster, C. gigas. The depuration kinetics of dietary Hg were determined experimentally in oysters using radiotracers techniques. Thus, AE and efflux rate constant (k_e) of iHg and MeHg were compared in oysters fed on an autotrophic protist model (diatom Thalassiosira pseudonana, diameter: 2.5–15 μm) or on a heterotrophic protist model (ciliate protozoan, Uronema marina, 20 μm of length). Both protists are components of the oyster natural diet (Le Gall et al., 1997; Dupuy et al., 1999).

2. Materials and methods

2.1. Acclimation of oysters

Pacific cupped oysters C. gigas, a cosmopolitan bioindicator of trace element contamination (Rainbow and Phillips, 1995), were purchased from a shellfish farm in La Rochelle, France. Oysters were then transferred to the IAEA Environment Laboratories in the Principality of Monaco. Prior to the experimentation, specimens were acclimated for 4 weeks to laboratory conditions (constantly aerated open-circuit aquarium; salinity: 36 ± 1; temperature: 19 ± 1 °C; pH: 8; light/dark cycle: 12 h/12 h). During acclimation, bivalves were fed the phytoplanktonic Prymnesiophyceae Isochrysis galbana (10^5 cells mL⁻¹). Recorded mortality was lower than 5% over the acclimation period.

2.2. Radiotracer and counting

Depuration kinetics of Hg in oysters were determined using high-specific activity inorganic 203Hg purchased from Isotope Products Laboratories (203Hg as HgCl2 in 1 M HCl, T1/2 = 46.6 days, specific activity: 4 10^8 Bq g⁻¹ at the beginning of the experiment). In order to assess the trophic transfer of methylmercury, MeHg was synthesized from 203HgCl₂ according to the method described in Rouleau and Block (1997). Briefly, this method is based on the methylation of inorganic 203Hg by methylcobalamin and isolation of resulting CH₃²⁰³Hg, using a hexane/benzene extraction procedure.

Exposed oysters were counted using a high-resolution γ-spectrometer system composed of three Germanium (N- or P-type) detectors (EGNC 33-195-R, Canberra® and Eurysis®) connected to a multi-channel analyzer and a computer equipped with a spectra analysis software (Interwinner® 4). The radioactivity was determined by comparison with standards of known activity and of appropriate geometry (Cresswell et al., 2017), and corrected for counting efficiency and physical radioactive decay. The counting time was adjusted to obtain a propagated counting error less than 5% (Warnau et al., 1996, 1997).

2.3. Trophic transfer experiment

Trophic transfer of iHg and MeHg in oysters was studied using protozoan and phytoplankton as diets. Ciliate (Uronema marina) and diatom (Thalassiosira pseudonana) clone 3H cells were maintained in FAG and F/2 (without EDTA) medium, respectively. Cultures were handled aseptically throughout the experimentation and exposed to 1 kBq ²⁰³HgCl₂ L⁻¹ or CH₃²⁰³Hg L⁻¹ during their exponential growing phase (4–7 d). In terms of stable Hg concentration, this addition corresponded to 12.3 ng L⁻¹. After the radio-labeling period, the diatom culture was centrifuged (2500 g for 25 min). The protozoan culture was filtered (25-μm mesh size; Osmonics® filters) and the filtrate centrifuged (1000 g for 15 min).

Forty oysters (weight: 68.6 ± 3.4 g wet wt, shell length: 89 ± 9 mm) had been randomly placed into four 13-L aquaria 14 days before the start of feeding experiment. Oysters were fed with radiolabeled food by resuspension of the centrifuged pellets (same concentration of 10^7 cells mL⁻¹ for the two food items) for 2 h in closed circuit. After the feeding period, all oysters were γ-counted and flow restored in the aquarium. Depuration was followed during 50 d in the same condition as for acclimation (see section 2.1). During the 50-d depuration period, oysters were fed daily with I. galbana (10^9 cells mL⁻¹).

Ingestion of food was verified by the γ-counting of the organisms at the end of the 2-h period of feeding. Activity per cell was notably higher in protozoans than diatoms (mean activity of 1150 and 1200 μBq ²⁰³Hg cell⁻¹ for iHg and MeHg in diatoms, and 0.27 and 0.18 μBq ²⁰³Hg cell⁻¹ for iHg and MeHg in diatoms) whereas the quantity ingested was lower (mean quantity of 3.5 10^5 cells for the ciliate and 3.1 10^6 cells for the diatom, for both iHg and MeHg). Bioconcentration capacities of the prey are nevertheless not directly comparable.
2.4. Data analysis

Depuration of radiotracers was expressed as the percentage of remaining radioactivity (radioactivity at time t divided by the initial radioactivity measured at the organism at the beginning of the depuration period). The depuration kinetics of the radiotracers were best fitted using either a single-component (Eq. (1)) or a double-component (Eq. (2)) exponential model (decision based on F test and ANOVA tables for two fitted model objects):

\[
A_t = A_{0l} e^{-k_{el} t} + A_{0l} e^{-k_{el} t}
\]

where \(A_t \) and \(A_0 \) are the remaining activities (%) at time t (d) and 0, respectively; \(k_s \) is the depuration rate constant (d\(^{-1}\)); 's' and 'l' are the subscripts for the 'short-lived' and 'long-lived' components, respectively. The short-lived component represents the depuration kinetics of the radiotracer fraction that is weakly associated to the organisms and rapidly eliminated, whereas the long-lived component describes the depuration kinetics of the radiotracer fraction that is tightly bound to the organism (Warnau et al., 1996). The long-lived component allows estimating the assimilation efficiency (AE) of the radiotracer ingested with food (AE = \(A_{0l} / A_{0l} \)). For each exponential component (s and l), a biological half-life can be calculated (\(T_{1/2} \)) from the corresponding depuration rate constant (\(k_{es} \) and \(k_{el} \), respectively) according to the relation \(T_{1/2} = \ln 2 / k \).

The AE of Hg depended both on the food and Hg speciation. Dietary pathway is now recognized as a major source of Hg bioaccumulation in marine invertebrates (e.g., Blackmore and Wang, 2004; Bustamante et al., 2006; Pan and Wang, 2011). The assimilation efficiency (AE) and efflux rate constant (\(k_{ef} \)) or retention time (\(T_{1/2} \)) are critical parameters in assessing the dietary uptake of trace elements (Reinfelder et al., 1997) and numerous studies have been dedicated to estimate these parameters in different marine organisms (e.g., Warnau et al., 1996; Wang and Wong, 2003a; Metian et al., 2008b; Lacoue-Labarthe et al., 2009). However, our understanding of the factors influencing the trophic transfer of Hg in bivalves is still limited.

3. Results

To evaluate the influence of diet on Hg assimilation in C. gigas, depuration kinetics of the iHg and MeHg were followed after a pulse-chase feeding, using radiolabelled food items (diatoms and ciliates). Whole-body depuration kinetics of MeHg in oysters fed with diatoms were described by a two-component exponential model (Fig. 1 and Table 1; \(R^2 = 0.56 \)) while depuration kinetics from oysters fed with ciliates were described by a one-component exponential model (Fig. 1 and Table 1; \(R^2 = 0.20 \)). Conversely, depuration kinetics of iHg from oyster fed with diatoms were described by a one-component exponential model (Fig. 1 and Table 1; \(R^2 = 0.71 \)) while depuration kinetics from oysters fed with ciliates were described by a two-component exponential model (Fig. 1 and Table 1; \(R^2 = 0.92 \)). A non-negligible fraction (30–96%) of the two radiotracers was strongly to very strongly retained in oysters regardless which confidence intervals do not overlap (Fayton et al., 2003).
cucullata fed on the same phytoplankton species. In contrast, the latter value is similar to the AE we observed when C. gigas was fed with the ciliate Uronema marinus (AE: 31 ± 2%). Such contrasting findings suggest that trophic transfer of iHg is both species- and food-dependent.

Another mechanism partially accounting for difference in AEs between iHg and MeHg in oysters fed on diatoms is how Hg is stored in the phytoplankton cells as shown for other trace elements (e.g., Reinfelder and Fisher, 1991; Wang et al., 1996; Metian et al., 2008a). Indeed, trace elements in algal cytoplasm are assumed to be more bioavailable than the fraction associated with organelles (Wang and Fisher, 1996; Lee and Luoma, 1998). Using subcellular fractioning technique, previous studies have shown that 40–60% of iHg was found in the bioavailable fraction in the diatoms Thalassiosira sp., whereas the proportion of MeHg in the bioavailable fraction was much higher (70–95%); Wu and Wang, 2011, 2013). Nevertheless, Lee and Fisher (2016) also highlighted that the proportion of MeHg in the cytoplasm of algal cells was dependent on environmental (culture) conditions. Indeed, the percentage of total cellular MeHg in the cytoplasmic fraction varied by a factor of 1.2–2.4 across six phytoplankton species maintained at two different temperatures (4 and 18 °C) in the dark or under a 14:10 light-dark cycle. To the best of our knowledge, the effects of culture conditions on the storage of trace elements have never been investigated in ciliates. Further investigations are needed to assess how the subcellular partitioning (see Wallace and Luoma, 2003) of Hg in diatom and ciliate may affect the trophic transfer of iHg and MeHg in the oysters.

Our study demonstrated that there was a marked difference in the assimilation of MeHg (MeHg and iHg) in the oyster C. gigas in response to the different diets tested. A number of studies have examined the assimilation of other trace elements from different food items (i.e., phytoplankton species) in oysters (e.g., Ettajani et al., 2001; Ke and Wang, 2001; Hédouin et al., 2010; Pan and Wang, 2011) and highlighted considerable variability in trace element assimilation according to the diets. As an example, Hédouin et al. (2010) found that Ca, Mn and Zn were better assimilated when tree oysters Isognomon isognomon was fed with Isochrysis galbana than when fed with Emiliana huxleyi or Heterocapsa triquetra. Similar findings were reported for the oyster C. gigas with significantly higher AE of Cd in oysters fed with prasinophyte Tetraselmis suecica (AE = 20%) than when fed with the diatom Skeletonema costatum (AE = 9%; Ettajani et al., 2001). Observed differences were mainly explained by the subcellular fractioning of the trace elements within the phytoplankton species.

To the best of our knowledge, ciliates were never considered as food to assess the trophic transfer of trace elements in bivalves. Twining and Fisher (2004) compared the AE of iHg in 3 species of calanoid copepods fed with ciliate Uronema marinus and phytoplankton (dinoflagellate Oxyrrhis marina). They found higher iHg AE (44–53%) in copepods fed with ciliates than in those fed with dinoflagellates (13–14%). For other trace elements (Ag, Cd, Fe, and Zn), AEs in copepods fed with ciliates were higher than when fed with dinoflagellates or diatoms (Fisher et al., 1991; Mason et al., 1996), which was correlated to the higher percentage of trace elements within cytoplasm of the ciliates. In the present study, we found that MeHg was more assimilated in oysters fed with ciliates than when fed with diatoms whereas the opposite trend was

Table 1 Parameters (mean ± SE, n = 5) of the whole-body depuration kinetics of iHg and MeHg in the Pacific cupped oyster (C. gigas) fed on ciliate (Uronema marinus) and diatom (Thalassiosira pseudonana). Depuration parameters: T1/2 (AE) activity (%) lost according to the short-and the long-lived exponential component, respectively; T1/2 (lobal biological half-life (d) [Tb = ln2/kE]; O and T: one-component and two-component exponential model, respectively. R2: determination coefficient.

<table>
<thead>
<tr>
<th>Food</th>
<th>Element</th>
<th>Model</th>
<th>AE (%) ± SE</th>
<th>kE ± SE</th>
<th>T1/2 (AE) ± SE</th>
<th>TB ± SE</th>
<th>AE (%) ± SE</th>
<th>kE ± SE</th>
<th>T1/2 (AE) ± SE</th>
<th>TB ± SE</th>
<th>R2 ± SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciliate</td>
<td>MeHg</td>
<td>O</td>
<td>—</td>
<td>—</td>
<td>96.16 ± 1.39***</td>
<td>0.001 ± 0.0006*</td>
<td>614 ± 302***</td>
<td>0.20</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>iHg</td>
<td>T</td>
<td>69.27 ± 4.28***</td>
<td>1.86 ± 0.41***</td>
<td>0.4 ± 0.1***</td>
<td>30.67 ± 2.40***</td>
<td>0.014 ± 0.003***</td>
<td>48 ± 11***</td>
<td>0.92</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Diatom</td>
<td>MeHg</td>
<td>T</td>
<td>39.29 ± 7.26***</td>
<td>1.78 ± 1.06**</td>
<td>0.4 ± 0.2***</td>
<td>60.71 ± 4.11***</td>
<td>0.012 ± 0.003***</td>
<td>56 ± 13***</td>
<td>0.56</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>iHg</td>
<td>O</td>
<td>—</td>
<td>—</td>
<td>85.72 ± 4.04***</td>
<td>0.024 ± 0.003***</td>
<td>28 ± 3***</td>
<td>0.71</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Probability of the model adjustment: NS p > 0.05, *p < 0.05, ***p < 0.001.
observed for iHg. In addition to interspecific differences in AE of an element from a same diet, the observed differences for the iHg assimilation in the oyster C. gigas and the copepods Acartia tonsa, A. hudsonica and Temora longicornis, may be related to the iHg exposure pathways of the ciliates and therefore to the form of storage of iHg. Indeed, Twining and Fisher (2004) exposed ciliates through their diet (i.e., radiolabeled bacteria) while in the present study, ciliates were directly exposed to Hg (iHg and MeHg) from the dissolved pathway. While bioaccumulation of waterborne trace elements is based on transport mechanisms across the cell membrane, ingested matrix enters within digestive vacuoles (where pH 3 was measured; Fok et al., 1982), concentrating the trace elements inside the ciliate cells (Twining and Fisher, 2004) and thus, potentially enhancing their bioavailability for consumers such as bivalves.

Although subcellular partitioning in prey is an important parameter influencing assimilation of trace elements, there is another important process to take into account: the rate at which a trace element passes through the digestive tract (Wang and Wong, 2003b). A long gut passage time (GPT) allows a more efficient assimilation by increasing the absorption time of the ingested trace elements through the intestinal epithelium. In earlier experimental studies, GPT has been shown to be dependent of the ingested diets. In the oyster C. rivularis fed with 4 different phytoplankton species and sediment, Ke and Wang (2001) found that GPT of Cd, Se and Zn varied by a factor of 10–20 with the highest values obtained when oysters fed on T. pseudonana. In the present study, the differences in AE of Hg (iHg and MeHg) in the Pacific cupped oyster C. gigas are therefore likely to result from (1) a difference in Hg bioavailability in the ciliate (Uronema marinus) and the diatom (T. pseudonana) and (2) a GPT dependent of the diets. In this study, our results indicated that, for oysters, differences in the bioavailability of Hg or in GPT depending on diets is not the only explanation on the variability of Hg assimilation. Indeed, the comparison of efflux rate constants (kE1) reveals that the retention of ingested Hg is also diet-dependent (especially for MeHg) indicating that excretion processes are also affected by the diet. Overall, the lower kE observed for MeHg indicates a strong retention of this compound in oysters (T1/2 ranging from 56 to 614 d).

Dietary pathway is an important contributor to the global bio-accumulation of Hg in bivalves (e.g., Blackmore and Wong, 2004; Metian et al., 2009). The present study has shown that the trophic transfer of Hg (iHg and MeHg) in the oyster C. gigas is influenced by its diet. As suggested by Hédouin et al. (2010), such experimental data need to be considered to better interpret bioaccumulation data obtained in the framework of biomonitoring programs.

5. Conclusion

Taking into account the major importance of the dietary pathway to the Hg bioaccumulation in bivalves, a special attention should be paid to the factors influencing the trophic transfer of Hg in this taxon. The present study provides new insights regarding the influence of very different food items, a heterotrophic protist (the ciliate Uronema marinus) and an autotrophic protist (the diatom T. pseudonana) on the AE of iHg and MeHg in the Pacific cupped oyster C. gigas. Such information can help refining both Hg bioaccumulation models and interpretation of data from field surveys and biomonitoring programs.

Acknowledgments

The IAEA is grateful for the support provided to its Environment Laboratories by the Government of the Principality of Monaco. The IUF (Institut Universitaire de France) is acknowledged for its support to PB as a Senior Member. MW is an Honorary Senior Research Associate of the National Fund for Scientific Research (NFSR, Belgium). The authors would like to express their gratitude to Dr Claude Rouleau for sharing his expertise on methylation of 203Hg.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.envpol.2019.113503.

References

efficiency of Cd, Cr, and Zn by two bivalves from San Francisco Bay. Limnol.
Oceanogr. 43, 1455–1466.
Le Gall, S., Bel Hassen, M., Le Gall, P., 1997. Ingestion of a bacteriovorous ciliate by the
oyster Crassostrea gigas: protozoa as a trophic link between picoplankton and
Metian, M., Bustamante, P., Cosson, R.P., Hédouin, L., Oberhansli, F., Warnau, M.,
2009. Delineation of heavy metal uptake pathways (seawater and food) in the
Ser. 375, 161–171.
Metian, M., Bustamante, P., Cosson, R.P., Hédouin, L., Warnau, M., 2008a. Investi-
gation of Ag in the king scallop Pecten maximus using field and laboratory ap-
Metian, M., Warnau, M., Cosson, R.P., Oberhansli, F., Bustamante, P., 2008b. Bio-
accumulation and detoxification processes of Hg in the king scallop Pecten
Pan, J.-F., Wang, W.-X., 2004. Uptake of Hg(II) and methylmercury by the green
Ser. 276, 125–136.
tervals or standard error intervals: what do they mean in terms of statistical
R Development Core Team, 2018. R: A Language and Environment for Statistical
Rafotopoulou, E.K., Dimitriadis, V.K., 2011. Comparative study of the accumulation
Rainbow, P.S., 1995. Biomonitoring of heavy metal availability in the marine envi-
and turnover rates of trace elements in marine bivalves: a comparison of oys-
food-chain: algal cells Phaeodactylum tricornutum, mussels Mytilus edulis and
flounders Platichthys flesus studied by means of a stepwise-reduction-CVAA
Rouleau, C., Block, M., 1997. Fast and high-yield synthesis of radioactive CH3199Hg(II).
Environ. 201, 417–427.
Public Health 14, 115.
Twinning, B.S., Fisher, N.S., 2004. Trophic transfer of trace metals from protozoa to
UNEP, 2013. Global Mercury Assessment 2013: Sources, Emissions, Releases, and
two bivalves. II. Significance of trophically available metal (TAM). Mar. Ecol.
Prog. Ser. 257, 125–137.
Wang, W.-X., Fisher, N.S., 1996. Assimilation of trace elements and carbon in the
Wang, W.-X., Wong, R.S., 2003a. Bioaccumulation kinetics and exposure pathways of
inorganic mercury and methylmercury in a marine fish, the sweetlips Plec-
Wang, W.-X., Wong, R.S., 2003b. Combined effects of food quantity and quality on
Ecol. 290, 49–69.
Warnau, M., Teyssie, J.-L., Fowler, S.W., 1996. Biokinetics of selected heavy metals
and radionuclides in the common Mediterranean echinoid Paracentrotus livi-
inorganic mercury and methylmercury in marine phytoplankton. Environ.
Pollut. 159, 3097–3105.