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Abstract
Mercury (Hg) is an environmental contaminant that can negatively impact the health of humans and wildlife. Albatrosses and 
large petrels show some of the highest levels of Hg contamination among birds, with potential repercussions for reproduc-
tion and survival. Here, body feather total Hg (THg) concentrations were determined in breeding adults of five species of 
albatrosses and large petrels in the foraging guild at South Georgia during the mid-2010s. We tested the effects of species, 
sex and trophic ecology (inferred from stable isotopes) on THg concentrations and compared our results with published 
values from past decades. Feather THg concentrations differed significantly among species (range: 1.9–49.6 µg g−1 dw), 
and were highest in wandering albatrosses Diomedea exulans, intermediate in black-browed albatrosses Thalassarche mel-
anophris and northern giant petrels Macronectes halli, and lowest in southern giant petrels M. giganteus and white-chinned 
petrels Procellaria aequinoctialis. Females were more contaminated than males in all species, potentially due to differences 
in distributions and diet composition. Across species, THg concentrations were not correlated with feather δ13C or δ15N 
values, implying that species effects (e.g., breeding and moulting frequencies) may be more important than trophic effects 
in explaining feather THg concentrations in this foraging guild. Within species, the only significant correlation was between 
THg and δ13C in wandering albatrosses, which could reflect higher Hg exposure in subtropical waters. Comparisons with 
THg concentrations from past studies, which reflect contamination from 10 to > 60 years ago, revealed considerable annual 
variation and some evidence for increases over time for wandering and black-browed albatrosses since before 1950 and from 
the late 1980s, respectively.

Mercury (Hg) contamination of marine ecosystems is an 
important environmental issue. Hg entering the environment 

can be of natural origin (e.g., from volcanism, rock weath-
ering, hydrothermal vents) or anthropogenic, and human 
inputs have greatly increased the amount of Hg in circulation 
since the Industrial Revolution (Pirrone et al. 2010; Lamborg 
et al. 2014; Outridge et al. 2018; Streets et al. 2019). Cur-
rently, artisanal and small-scale gold mining (ASGM) is the 
largest anthropogenic source of Hg released into the atmos-
phere (Keane et al. 2023). Hg emissions are assumed to be 
deposited predominantly within the same hemisphere, given 
that the atmospheric lifetime of 3–6 months is shorter than 
the timescale for interhemispheric air exchange (Fisher et al. 
2023; Schneider et al. 2023). Hg primarily enters the open 
ocean via atmospheric deposition (Driscoll et al. 2013), and 
once in this environment, inorganic Hg (iHg) is methylated 
to organic methyl-Hg (MeHg), principally by microorgan-
isms (Hg methylators), such as iron- and sulfate-reducing 
bacteria (Hsu-Kim et al. 2013). MeHg, which is the most 
toxic and bioavailable form of Hg, bioaccumulates within 
marine organisms, such that concentrations increase in 
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tissues over time, and biomagnifies up marine food chains, 
increasing from lower to higher trophic levels (Seco et al. 
2021). In marine ecosystems, top predators with long lifes-
pans (including large fish, seabirds and marine mammals) 
can therefore accumulate high Hg concentrations in their 
tissues (Monteiro and Furness 1995; Chételat et al. 2020).

Feathers are frequently used as a non-destructive means 
of monitoring Hg contamination of seabirds (Albert et al. 
2019). Moult is considered to play a major role in the 
elimination of MeHg (Braune 1987; Renedo et al. 2021), 
and Hg bound in the feathers may account for > 90% of 
the total body burden in some seabirds, though this fig-
ure is much lower (< 10%) for albatrosses (Braune and 
Gaski 1987; Kim et al. 1996). Once bound to the sulfhy-
dryl groups of keratin molecules, Hg cannot be lost from 
feathers (Crewther et al. 1965; Appelquist et al. 1984). The 
total Hg concentrations (THg) measured in feathers are 
almost exclusively MeHg (> 90%) and so are often used as 
a proxy for MeHg (Renedo et al. 2017). Depending on the 
seabird species, Hg in the feathers of adults may primarily 
reflect remobilised Hg that has accumulated in internal 
tissues between successive moults (i.e., capital strategy) 
or MeHg derived from recent dietary intake (i.e., income 
strategy) (Cherel et al. 2018).

Diet analyses can reveal the drivers of contamination 
levels, as seabirds are mainly exposed to Hg via their prey. 
Stomach contents or pellets can be used to identify ingested 
prey to species level, but are biased by the different diges-
tion rates and retention times of prey, and cannot be col-
lected outside of the breeding period if birds are far from the 
colony (Barrett et al. 2007). Stable isotope analysis offers 
an alternative approach for relating diet to contaminant bur-
dens, as the isotopic composition of consumer tissues relates 
predictably to that of their prey (Thompson et al. 1998). 
Bulk carbon stable isotope values (δ13C) of seabird tissues 
vary little with trophic level (~ 1‰), but can be used to infer 
feeding areas (e.g., the relative dependence on inshore vs. 
offshore, benthic vs. pelagic diets, and on latitude/water 
mass), whereas those of nitrogen (δ15N) show a stepwise 
increase with trophic level (~ 3–5‰) (Peterson and Fry 
1987; Hobson and Clark 1992; Bearhop et al. 2002; Cherel 
and Hobson 2007; Phillips et al. 2009). However, baseline 
δ15N values also vary spatially, which can obscure varia-
tion associated with trophic position (Elliott et al. 2021). 
For instance, high δ13C and δ15N values of feathers from 
adult seabirds in the southwest Atlantic Ocean indicate that 
they feed in neritic waters (Phillips et al. 2009; Mills et al. 
2024). Stable isotope values of feathers reflect diet during 
their synthesis, and because they are metabolically inert, 
they retain this information indefinitely (Cherel et al. 2000). 
Albatrosses and petrels generally do not breed and moult 
concurrently (Prince et al. 1993; Cherel et al. 2000; Catry 
et al. 2013); hence, stable isotope analyses of adult feathers 

provide dietary information during the nonbreeding period 
(Cherel et al. 2000; Phillips et al. 2009).

In this study, we investigated the dynamics of Hg con-
tamination among adults of five species of albatrosses and 
large petrels from the globally important populations at 
South Georgia, sampled in the mid-2010s. South Georgia is 
located ~ 300 km south of the Antarctic Polar Front (APF) in 
the southwest Atlantic Ocean sector of the Southern Ocean. 
All study species have been tracked in previous years using 
geolocators (Phillips et al. 2005, 2006; González-Solís et al. 
2008; Clay et al. 2018; Granroth-Wilding and Phillips 2019), 
and we used body feather δ13C and δ15N values to infer feed-
ing areas of individuals in this study during the non-breeding 
season. Our study species show some of the highest feather 
THg concentrations among birds; indeed, albatrosses are 
the most contaminated avian family in terms of Hg (Cherel 
et al. 2018). Our objectives were to: (i) identify different 
factors driving feather THg concentrations within this for-
aging guild (including species, sex and trophic ecology), 
hypothesising that species characteristics (e.g. breeding 
and moulting frequencies) are more important than trophic 
effects (Stewart et al. 1999; Anderson et al. 2009); and (ii) 
compare contamination levels in the 2010s (measured here), 
with data from past studies at South Georgia (Thompson 
et al. 1993; Anderson et al. 2009; Becker et al. 2002, 2016). 
The latter is especially pertinent as there is evidence for 
increasing feather THg concentrations of adult grey-headed 
albatrosses Thalassarche chrysostoma from South Georgia 
since the late 1980s (Mills et al. 2020a). Moreover, even at 
low levels, Hg contamination can have a variety of nega-
tive effects on seabirds, including on physiology, immune 
status and behaviour (Tartu et al. 2015; Ibañez et al. 2024), 
and can ultimately impact breeding success and population 
dynamics (Mills et al. 2020a; Goutte et al. 2014a, 2014b). 
Hg contamination during the non-breeding period may also 
have negative carry-over effects in the subsequent breeding 
period (Mills et al. 2020a; Carravieri et al. 2023).

Materials and Methods

Study Site, Species and Feather Sampling

Feather sampling of albatrosses and large petrels was under-
taken at Bird Island, South Georgia (54°00’S, 38°03’W). 
South Georgia is a United Kingdom (UK) Overseas Terri-
tory at the northern limit of the Scotia Sea. Random samples 
of body feathers were obtained from breeding adults dur-
ing the incubation or brood-guard periods of the following 
species: wandering albatross Diomedea exulans (n = 15), 
black-browed albatross T. melanophris (n = 15), northern 
giant petrel Macronectes halli (n = 16), southern giant petrel 
M. giganteus (n = 16) and white-chinned petrel Procellaria 
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aequinoctialis (n = 12) (Table 1). Southern giant petrels 
were sampled in the 2011/2012 breeding season and other 
species in 2014/2015. Body feathers present less variation 
in Hg levels than flight feathers and their collection does 
not impair flight performance (Furness et al. 1986). Feath-
ers were stored dry in sealed plastic bags or envelopes and 
then returned to the British Antarctic Survey (Cambridge, 
UK) for laboratory analyses. Birds were sexed from records 
of observed copulatory position, bill sizes or from DNA 
extracted from blood samples (Fridolfsson and Ellegren 
1999). Birds were of unknown age; however, previous stud-
ies have not found significant relationships between feather 
THg concentrations and age in breeding adult albatrosses 
(Tavares et al. 2013; Bustamante et al. 2016; Mills et al. 
2020a).

All study species (excluding the wandering albatross) 
typically breed annually and during the austral summer, 
returning to the colony from September to November and 
fledging chicks from March to June. Wandering albatrosses, 
however, return from October to November, fledge chicks 
from November to December in the following year, and 
breed biennially if successful. Moult and breeding are ener-
getically expensive and do not tend to occur simultaneously 
in albatrosses and petrels (Prince et al. 1993; Cherel et al. 
2000; Catry et al. 2013). However, some body feather moult 
occurs during the early breeding season in giant petrels, and 
to a limited extent during the late breeding season in black-
browed albatrosses at South Georgia (Hunter 1984; Catry 
et al. 2013). Growing body feathers, which were present 

in a few giant petrels, were avoided during sampling. Two 
generations of body feathers were always apparent, but 
only the newer, less abraded feathers were collected, hence 
it is likely that these feathers represent the preceding non-
breeding period in all cases. Body feather replacement in 
the study species occurs gradually during the non-breeding 
period (~ 7% being moulted and replaced at any one time), 
and so the exact timing of moult of individual feathers is 
unknown (Battam et al. 2010).

Total Mercury Analysis

Feathers were cleaned using repeated chloroform:methanol 
solution (2:1 v/v) and Milli-Q® water rinses. The feather 
samples were then air-dried under a fume hood for 48 h 
and cut into very fine fragments using stainless steel scis-
sors. Multiple feathers were pooled and homogenised per 
individual to ensure compatibility with previous studies at 
South Georgia (Thompson et al. 1993; Anderson et al. 2009; 
Becker et al. 2002, 2016). THg concentrations were meas-
ured in subsamples of the homogenised body feathers using 
an Advanced Mercury Analyser spectrophotometer (AMA 
254 Altec®) at the laboratory Littoral Environnement et 
Sociétés (LIENSs, La Rochelle, France). Each sample was 
analysed in duplicate or triplicate until the relative stand-
ard deviation (RSD) between measurements was < 10%. 
Blanks were analysed at the beginning of each sample 
run and accuracy was assessed using a certified reference 
material (CRM), lobster hepatopancreas TORT-3 (National 

Table 1   Mean (± SD), minimum and maximum total Hg concentrations (µg g−1 dw) and stable isotope values (‰) of carbon (δ13C) and nitrogen 
(δ15N) in body feathers of albatrosses and large petrels at Bird Island, South Georgia (southwest Atlantic Ocean sector of the Southern Ocean)

Feather samples were collected from all species in the 2014/2015 breeding season, except southern giant petrels Macronectes giganteus, which 
were sampled in 2011/2012

THg (µg g−1 dw) δ13C (‰) δ15N (‰)

Species n Mean ± SD Range Mean ± SD Range Mean ± SD Range

Black-browed albatross 15 7.98 ± 2.87 2.20 to 13.20 − 15.8 ± 0.9 − 18.1 to − 14.4 16.2 ± 1.0 14.7 to 17.7
Female 8 9.02 ± 2.94 3.40 to 13.20 − 15.8 ± 0.8 − 16.6 to − 14.4 15.9 ± 1.1 14.7 to 17.7
Male 7 6.79 ± 2.46 2.20 to 9.51 − 15.8 ± 1.2 − 18.1 to − 14.8 16.6 ± 0.8 15.5 to 17.4
Northern giant petrel 16 8.22 ± 5.15 2.60 to 19.87 − 18.6 ± 0.7 − 19.8 to − 17.1 14.7 ± 0.8 12.9 to 15.9
Female 8 9.16 ± 4.77 3.25 to 17.70 − 18.8 ± 0.6 − 19.8 to − 18.1 14.5 ± 1.0 12.9 to 15.6
Male 8 7.29 ± 5.67 2.60 to 19.87 − 18.4 ± 0.7 − 19.4 to − 17.1 14.9 ± 0.6 14.3 to 15.9
Southern giant petrel 16 5.38 ± 1.65 2.62 to 8.57 − 21.2 ± 1.7 − 23.8 to − 17.7 13.2 ± 1.7 10.6 to 16.1
Female 9 6.29 ± 1.35 4.50 to 8.57 − 20.7 ± 2.1 − 23.8 to − 17.7 13.9 ± 2.0 10.6 to 16.1
Male 7 4.21 ± 1.22 2.62 to 6.12 − 21.8 ± 0.5 − 22.6 to − 21.3 12.4 ± 0.8 11.1 to 13.2
Wandering albatross 15 31.91 ± 11.44 16.38 to 49.56 − 18.2 ± 0.9 − 19.9 to − 16.6 15.8 ± 0.7 14.7 to 17.4
Female 7 39.60 ± 7.92 27.72 to 49.56 − 17.6 ± 0.7 − 18.3 to − 16.6 15.9 ± 0.6 15.1 to 16.4
Male 8 25.17 ± 9.85 16.38 to 46.36 − 18.7 ± 0.9 − 19.9 to − 17.5 15.8 ± 0.9 14.7 to 17.4
White-chinned petrel 12 4.87 ± 2.47 1.91 to 9.42 − 16.7 ± 0.5 − 18.1 to − 16.2 17.7 ± 1.0 16.1 to 19.5
Female 8 5.33 ± 2.58 1.91 to 9.42 − 16.6 ± 0.3 − 17.0 to − 16.2 17.5 ± 1.0 16.1 to 18.4
Male 4 3.95 ± 2.28 2.05 to 7.24 − 17.0 ± 0.8 − 18.1 to − 16.4 18.0 ± 1.2 16.8 to 19.5
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Research Centre [NRC], Canada; certified THg concentra-
tion: 0.292 ± 0.022 µg g−1 dw), and our measured concentra-
tion was 0.295 ± 0.006 µg g−1 dw (n = 27). Our CRM results 
were in thus in good agreement with the certified values with 
a recovery of 101.1 ± 2.1%. The detection limit of the AMA 
was 0.005 µg g−1 dw. THg concentrations are presented in 
µg g−1 dw.

Stable Isotope Analysis

Stable isotopes of carbon and nitrogen were measured in 
the same homogenised feather subsamples as above. Sub-
samples were weighed (~ 0.3 mg) into 6 × 4 mm tin cap-
sules using a microbalance and stable isotope analyses 
were undertaken at the Laboratory of Stable Isotopes at 
the Doñana Biological Station (Seville, Spain). Samples 
were combusted at 1020 °C with a continuous flow isotope-
ratio mass spectrometry system by means of Flash HT Plus 
elemental analyser coupled to a Delta-V Advantage isotope 
ratio mass spectrometer via a CONFLO IV interface (Ther-
moFisher Scientific, Bremen, Germany). Stable isotope 
ratios are reported using the conventional δ notation (‰) 
following the equation: δX = [(Rsample/Rstandard) − 1] × 1000, 
where X is 13C or 15N, R is the corresponding ratio 13C:12C 
or 15N:14N, and Rstandard is the ratio of international refer-
ences Vienna Peedee Belemnite for carbon and atmospheric 
N2 (AIR) for nitrogen. The following internal standards were 
used: EBD-23 (cow horn), LIE-BB (whale baleen), and LIE-
PA (razorbill feathers). Internal standards were routinely 
inserted into the sampling sequence to correct for linearity 
and instrument drift. Replicate assays of internal standards 
indicated analytical precisions of ± 0.1 and ± 0.2‰ for δ13C 
and δ15N, respectively. Internal standards were calibrated 
with international standards from the International Atomic 
Energy Agency (IAEA, Vienna).

Data Analysis

Data were analysed using R version 4.0.3. and visualised 
using the ggplot2 package (Wickham 2016; R Core Team 
2020). Assumptions of normality of residuals and homo-
geneity of variances were tested using Shapiro–Wilk and 
Levene’s tests, respectively. THg concentrations were sub-
sequently log-transformed. The effects of species, sex and 
their two-way interaction on feather THg concentrations 
were tested using a two-way ANOVA followed by post-hoc 
Tukey’s HSD tests. The effect of species on feather δ13C 
and δ15N values was testing using Kruskal–Wallis tests and 
post-hoc Dunn’s tests. Welch’s t-tests were used to assess 
sex differences in feather δ13C and δ15N values for each spe-
cies. Spearman’s rank correlations were used to test for asso-
ciations between feather THg concentrations and δ13C and 
δ15N values across species and for each species separately, 

as pooling species that migrate to distinct habitats with dif-
ferent isotopic baselines (e.g., oceanic vs. continental shelf/
shelf-slope waters) may obscure relationships with THg 
(Anderson et al. 2009; Blévin et al. 2013). Lastly, we com-
pared our data with previously published feather THg con-
centrations for the study species at South Georgia (Thomp-
son et al. 1993; Anderson et al. 2009; Becker et al. 2002, 
2016). Only means, SDs and sample sizes were available 
from these previous studies (Table 2). Statistical significance 
was assumed at α = 0.05 in all cases.

Results

Total Hg Concentrations

There were significant effects of species and sex on (log-
transformed) feather THg concentrations (two-way ANOVA, 
F4,64 = 43.1, p < 0.001 and F1,64 = 12.4, p < 0.001, respec-
tively). The interaction term was not significant (F4,64 = 0.13, 
p = 0.97). The general pattern from the post-hoc Tukey’s 
HSD tests was that feather THg concentrations were con-
siderably higher in wandering albatrosses than other spe-
cies, intermediate in black-browed albatrosses and north-
ern giant petrels, and lowest in southern giant petrels and 
white-chinned petrels (Fig. 1). Females had higher THg 
concentrations than males in all species (Table 1). In a com-
parison with previous studies, feather THg concentrations 
of all study species showed annual variation, and there was 
some evidence for increases over time for wandering and 
black-browed albatrosses since before 1950 and from the 
late 1980s, respectively (Table 2).

Stable Isotopes

Species had a significant effect on feather δ13C and δ15N 
values (Kruskal–Wallis tests, χ2

4 = 55.9, p < 0.0001 and 
χ2

4 = 45.5, p < 0.0001, respectively) (Figs. 2, 3). Post-hoc 
Dunn’s tests showed that the ranking of species in order 
of increasing (i.e., less negative) δ13C values was southern 
giant petrel, northern giant petrel, wandering albatross, 
white-chinned petrel and black-browed albatross (Fig. 3), 
and of increasing δ15N values was southern giant petrel, 
northern giant petrel, wandering albatross, black-browed 
albatross and white-chinned petrel (Fig. 3). Feather δ13C 
values of female wandering albatrosses were significantly 
less negative than those of males (Welch’s t-test, t = 2.63, 
p < 0.05), but there were no other significant differences 
in feather δ13C and δ15N values for any study species (all 
p ≥ 0.15) (Table 1). Feather THg concentrations were not 
significantly correlated with δ13C or δ15N values across spe-
cies (Spearman’s rank correlations, rho = 0.12, p = 0.30 and 
rho = 0.05, p = 0.68) (Fig. 4). The only significant correlation 
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within species was between THg and δ13C values in wander-
ing albatrosses (rho = 0.68, p < 0.01) (Fig. 4).

Discussion

Certain life-history and ecological traits of albatrosses and 
large petrels (e.g., high trophic positions) lead them to accu-
mulate high Hg concentrations in their tissues. In this study, 
we measured body feather THg concentrations of five spe-
cies in the foraging guild of albatrosses and large petrels 
at South Georgia during the mid-2010s, where there are 
globally important breeding populations of all study spe-
cies. Our study analysed the underlying drivers of variation 
in Hg contamination and compared the THg concentrations 
with those of previous studies, reflecting contamination dur-
ing the previous two to over six decades.

Interspecific Differences in Hg Contamination

Species had a significant effect on feather THg concentra-
tions in our study. Most notably, feather THg concentra-
tions of wandering albatrosses were far higher than our 
other study species (Fig. 1). THg concentrations were 
also higher than those of wandering albatrosses at the 

Crozet (mean ± SD, 22.14 ± 10.30 µg g−1 dw), Kerguelen 
(16.59 ± 3.78  µg  g−1 dw) and Prince Edward Islands 
(24.83 ± 12.35 µg g−1 dw) (Thompson et al. 1993; Car-
ravieri et al. 2014a; Bustamante et al. 2016; Cherel et al. 
2018), and of grey-headed albatrosses sampled at Bird 
Island in 2013/14 (13.08 ± 6.56 µg g−1 dw) (Mills et al. 
2020a). Among albatrosses and petrels, only the Amster-
dam albatross D. amsterdamensis has higher mean feather 
THg concentrations (34.60 ± 12.50 µg g−1 dw) (Cherel 
et al. 2018).

Different moulting patterns provide one explanation for 
the significant interspecific differences in THg concentra-
tions in our study, as feather THg concentrations do not just 
reflect exposure during synthesis (i.e., dietary intake), but 
also the release of Hg accumulated since the previous moult 
(Anderson et al. 2009; Carravieri et al. 2014b; Cherel et al. 
2018). Species that take several years to moult all their feath-
ers will accumulate Hg over a considerably longer period 
than those which replace all feathers annually (Stewart et al. 
1999; Anderson et al. 2009). Although this seems likely to 
partly explains the higher Hg concentrations of wandering 
albatrosses compared to our other study species, which is the 
only biennial breeder in our study, breeding frequency (i.e., 
annual vs. biennial) was not an explanatory factor in models 
of feather THg concentrations of various albatross species in 

Table 2   Mean (± SDs) total Hg concentrations (µg g−1 dw) and stable isotope values (‰) of carbon (δ13C) and nitrogen (δ15N) in body feathers 
of albatrosses and large petrels sampled in different years at Bird Island, South Georgia (southwest Atlantic Ocean sector of the Southern Ocean)

Samples analysed by Cherel et al. (2018) were of a single feather per bird, and Thompson et al. (1993) did not specify the exact year for feathers 
collected before 1950 and pooled THg concentrations of wandering albatrosses from 1985 and 1989 as they were not significantly different

Species Year n THg (µg g−1 dw) δ13C (‰) δ15N (‰) Citation

Black-browed albatross 1989 20 4.57 ± 1.98 – – Thompson et al. (1993)
1998 16 5.39 ± 2.05 – – Becker et al. (2002)
2002 16 8.35 ± 2.63 − 14.9 ± 0.9 15.9 ± 1.0 Anderson et al. (2009)
2006 10 6.86 ± 2.87 − 15.3 ± 1.7 15.4 ± 1.8 Cherel et al. (2018)
2015 15 7.98 ± 2.87 − 15.8 ± 0.9 16.2 ± 1.0 This study

Northern giant petrel 1998 37 4.99 ± 3.76 − – Becker et al. (2002)
2002 15 10.52 ± 5.54 − 18.8 ± 0.9 13.8 ± 1.1 Anderson et al. (2009)
2015 16 8.22 ± 5.15 − 18.6 ± 0.7 14.7 ± 0.8 This study

Southern giant petrel 1998 29 7.77 ± 3.57 – – Becker et al. (2002)
2002 16 8.25 ± 3.98 − 21.0 ± 1.4 12.9 ± 1.6 Anderson et al. (2009)
2012 16 5.38 ± 1.65 − 21.2 ± 1.7 13.2 ± 1.7 This study

Wandering albatross Pre-1950 7 20.69 ± 15.23 – – Thompson et al. (1993)
1985/89 66 19.59 ± 10.12 – – Thompson et al. (1993)
2002 14 27.43 ± 8.14 − 17.3 ± 0.8 15.2 ± 0.8 Anderson et al. (2009)
2006 10 20.31 ± 5.88 − 17.4 ± 1.1 15.4 ± 0.6 Cherel et al. (2018)
2009 34 20.14 ± 7.64 – – Tavares et al. (2013)
2015 15 31.91 ± 11.44 − 18.2 ± 0.9 15.8 ± 0.7 This study

White-chinned petrel 1998 10 3.79 ± 1.72 − − Becker et al. (2002)
2002 16 7.43 ± 1.97 − 15.5 ± 0.8 17.6 ± 1.4 Anderson et al. (2009)
2015 12 4.87 ± 2.47 − 16.7 ± 0.5 17.7 ± 1.0 This study
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the review by Cherel et al. (2018), and feather concentrations 
were considered to predominantly reflect dietary intake.

An alternative explanation for the significant interspecific 
differences in THg concentrations is variation in diets and 
feeding areas, and hence dietary exposure to MeHg. How-
ever, the interspecific pattern of feather δ13C values did not 
correspond exactly with THg concentrations (Figs. 1 and 
2; see below), which is likely because the different species 
migrate to habitats with different isotopic baselines in the 
Southern Ocean (Anderson et al. 2009). There is a general 
pattern of increasing Hg contamination of seabirds feeding 
in subtropical compared to subantarctic and Antarctic waters 
in the Southern Ocean (Renedo et al. 2020), and from species 
that feed in coastal to more oceanic waters (Ochoa-Acuna 
et al. 2002). Wandering albatrosses forage in various habitats 
during the non-breeding period, though mostly in subantarc-
tic to subtropical waters within the southwest Atlantic Ocean 
(Fig. 2) (Phillips et al. 2009; Clay et al. 2018). Hence, their 
use of lower latitude foraging areas likely contributes to their 
high Hg contamination levels. In contrast, as reflected in 
our isotope data, most southern giant petrels, which showed 
much lower THg concentrations, remain in waters south of 
the APF during the non-breeding season (Fig. 2). This cor-
responds with previous tracking studies, which show that 

southern giant petrels exploit Antarctic waters to a greater 
extent than northern giant petrels, many of which utilise 
the Patagonian Shelf or subantarctic waters to the north of 
South Georgia (Phillips et al. 2009; González-Solís et al. 
2008; Granroth-Wilding and Phillips 2019). The high feather 
δ13C and δ15N values of white-chinned petrels and black-
browed albatrosses are indicative of feeding in continental 
shelf and shelf-slope regions (Fig. 2) (Phillips et al. 2009; 
Mills et al. 2024), with the former feeding on the Patagon-
ian Shelf and Humboldt Upwelling System off Chile during 
the non-breeding period (Phillips et al. 2006), and the latter 
migrating to the Benguela Upwelling System off southwest 
Africa (Phillips et al. 2005). Many of the birds that migrate 
to continental shelf and shelf-slope waters will follow ves-
sels, feeding on discarded demersal fishes which potentially 
have a high Hg content, possibly because they have longer 
lifespans and feed at higher trophic levels on prey that usu-
ally have higher Hg levels than those in the epipelagic zone 
(Arcos et al. 2002; Petersen et al. 2008). Our stable isotope 
data indicate that these descriptions of non-breeding dis-
tributions are appropriate for the individuals in our study 
(Fig. 2). Diet composition, including the consumption of 
prey from different depths in the water column or of different 
sizes, may also influence Hg exposure. However, conven-
tional diet data are not available for our study species during 

Fig. 1   Boxplots of total Hg concentrations (µg g−1 dw) in body feath-
ers of albatrosses and petrels sampled at Bird Island, South Georgia. 
Species abbreviations are as follows: BBA = black-browed albatross 
Thalassarche melanophris; NGP = northern giant petrel Macronectes 
halli; SGP = southern giant petrel M. giganteus; WA = wandering 
albatross Diomedea exulans; WCP = white-chinned petrel Procel-
laria aequinoctialis. Samples were collected from southern giant 
petrels in the 2011/2012 breeding season and from all other species 
in 2014/2015. Species sharing superscript letters are not significantly 
different according to post-hoc Tukey’s HSD tests. Boxplots show 
medians (horizontal lines), interquartile range (IQR; boxes), the low-
est and highest values within 1.5 × IQR (whiskers) and outliers (black 
points)

Fig. 2   Mean (± SDs) and individual carbon (δ13C) and nitrogen 
(δ.15N) stable isotope values (‰) of body feathers of albatrosses 
and petrels sampled at Bird Island, South Georgia. Species abbrevia-
tions are: BBA = black-browed albatross Thalassarche melanophris; 
NGP = northern giant petrel Macronectes halli; SGP = southern giant 
petrel M. giganteus; WA = wandering albatross Diomedea exulans; 
WCP = white-chinned petrel Procellaria aequinoctialis. Samples 
were collected from southern giant petrels in the 2011/2012 breeding 
season and from all other species in 2014/2015. Grey vertical shaded 
areas and text reflect the approximate locations of biogeographic 
boundary zones (Phillips et al. 2009)



369Archives of Environmental Contamination and Toxicology (2024) 86:363–374	

the non-breeding period, when they are far from land and are 
not accessible for sampling.

Sex Differences in Hg Contamination

There was a significant effect of sex on feather THg con-
centrations in our study, with females having higher levels 

of Hg contamination than males even though some Hg in 
females may be deposited in the egg (Robinson et al. 2012; 
Carravieri et al. 2014a). The sex-species interaction was not 
significant. Assuming a strong influence of dietary intake on 
feather THg of albatrosses and giant petrels (Cherel et al. 
2018; Renedo et al. 2021), differences in contamination may 
be due to sex-specific differences in diets and feeding areas 
(Carravieri et al. 2014a; Bustamante et al. 2016). Indeed, 
higher feather and blood THg concentrations of female com-
pared to male wandering albatrosses at the Crozet Islands 
were attributed to greater time spent foraging in subtropical 
and subantarctic waters than in Antarctic waters (Carravieri 
et al. 2014a; Bustamante et al. 2016). Our study found that 
feather δ13C values were more negative in male than female 
wandering albatrosses, potentially indicating higher-latitude 
feeding areas. A previous study at South Georgia found 
a weak overall effect of sex on δ13C in the sexually size-
dimorphic albatrosses and giant petrels, although none of 
the comparisons within species were statistically significant 
(Phillips et al. 2009). Tracking studies in the Indian Ocean 
indicate there is some sexual segregation by latitude in core 
foraging areas of non-breeding wandering albatrosses, with 
females tending to feed in more northerly waters (Weimer-
skirch et  al. 2014). Geolocator data from non-breeding 
black-browed albatrosses show that females feed 4 to 5° fur-
ther north within the Benguela Upwelling system than males 
(Phillips et al. 2005); however, there is a degree of overlap 
which may be why there was no difference between sexes 
in mean feather δ13C values. There is limited evidence for 
sexual segregation in foraging areas of northern giant petrels 
during winter, although males have a larger foraging range 
than females; however, female southern giant petrels for-
age more on the southern Patagonian shelf-break and males 
are mostly restricted to South Georgia and more southerly 
waters (González-Solís et al. 2008). Hence it appears that the 
sex differences in feather Hg concentrations in some study 
species may result from differences in diet composition or 
other aspects of foraging behaviour or distribution that are 
too subtle to be reflected in the stable isotope data. Small 
sample sizes of some species or sex groups may have also 
contributed to the lack of significant differences.

Influence of Diets and Distributions

THg concentrations were not correlated with feather δ13C 
or δ15N values across species (see above). The wandering 
albatross was the only species for which we found a sig-
nificant correlation between THg concentrations and stable 
isotope values (Fig. 4). The relatively weak correlation with 
δ13C values may be because we analysed pooled rather than 
individual feathers, to ensure comparability with previous 
data (Cherel et al. 2018). Additionally, integration periods 
for stable isotopes and THg into feathers will differ if MeHg 

Fig. 3   Boxplots of (a) carbon (δ13C) and (b) nitrogen (δ15N) sta-
ble isotope values (‰) in body feathers of albatrosses and large 
petrels sampled at Bird Island, South Georgia. Species abbrevia-
tions are: BBA = black-browed albatross Thalassarche melanophris; 
NGP = northern giant petrel Macronectes halli; SGP = southern giant 
petrel M. giganteus; WA = wandering albatross Diomedea exulans; 
WCP = white-chinned petrel Procellaria aequinoctialis. Samples 
were collected from southern giant petrels in the 2011/2012 breed-
ing season and from all other species in 2014/2015. Species sharing 
superscript letters are not significantly different according to post-hoc 
Dunn’s tests. Boxplots show medians (horizontal lines), interquartile 
range (IQR; boxes), the lowest and highest values within 1.5 × IQR 
(whiskers) and outliers (black points)
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is maintained in a body reservoir until it can be eliminated 
(Bond 2010). However, THg in body feathers of albatrosses 
appears to be a faithful reflection of Hg exposure on moult-
ing grounds (Cherel et al. 2018). In the Southern Ocean, 
feather δ13C values of wandering albatrosses should princi-
pally reflect foraging latitude, with values increasing from 
waters in Antarctica towards the subantarctic and subtropics 
(Cherel and Hobson 2007; Phillips et al. 2009). Although 
two studies found that MeHg concentrations were higher 
in waters to the south than north of the APF (Cossa et al. 
2011; Yue et al. 2023), there is a well-documented pattern of 
increasing Hg contamination of seabirds feeding in Antarctic 
and subantarctic waters compared to those in the subtropics 
(Carravieri et al. 2016, 2017; Renedo et al. 2020; Mills et al. 
2022) This may reflect spatial differences in the bioavailabil-
ity of Hg to seabirds, potentially due to greater vertical mix-
ing and more efficient Hg methylation at depth in lower lati-
tudes (Renedo et al. 2020). Differences in food chain lengths 
with latitude could also contribute to these spatial differ-
ences, which are potentially shorter at higher than at lower 
latitudes (Forero et al. 2005; Renedo et al. 2020). There were 
no significant correlations between THg concentrations and 
δ15N values for any study species. Typically, δ15N is used as 
a proxy for trophic level, and therefore values are expected to 
correlate with THg because of biomagnification through the 
food web. However, moulting habitats of our study species 
are likely marked by variable δ15N baselines (St John Glew 
et al. 2021). Hence δ15N values across the study species may 
not relate directly to trophic level. Future studies at South 
Georgia could use compound-specific stable isotope analy-
ses of amino acids to provide unbiased estimates of trophic 
positions (Elliott et al. 2021), as has been conducted on some 
seabird species elsewhere in the Southern Ocean (Thébault 
et al. 2021; Quillfeldt et al. 2023).

Long‑Term Changes in Hg Contamination

Data on feather THg concentrations were available from 
the late 1990s and early 2000s for giant petrels and white-
chinned petrels, the late 1980s and the mid 2000s for black-
browed albatrosses, and before 1950, the late 1980s and mid 
2000s for wandering albatrosses (Table 2). However, caution 
should be applied when comparing data among previous 
studies as the methods used to quantify THg concentrations 

differ. For instance, one study extracted organic Hg to over-
come the application of iHg as a preservative on museum 
specimens (Thompson et al. 1993). Distinguishing typical 

Fig. 4   Relationships between body feather total Hg (THg) con-
centrations (µg g−1 dw) and (a) δ13C and (b) δ15N values (‰) of 
body feathers of albatrosses and large petrels; and (c) relationships 
between feather THg concentrations and δ13C values of wandering 
albatross Diomedea exulans sampled at Bird Island, South Georgia. 
Species abbreviations are: BBA = black-browed albatross Thalas-
sarche melanophris; NGP = northern giant petrel Macronectes halli; 
SGP = southern giant petrel M. giganteus; WA = wandering albatross; 
WCP = white-chinned petrel Procellaria aequinoctialis 

▸
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annual variation from genuine long-term trends is chal-
lenging because of the limited availability of previous data; 
nevertheless, there was some evidence for a slight increase 
over time in feather THg concentrations of black-browed 
albatrosses and wandering albatrosses since the late 1980s 
and before 1950, respectively (Table 2). However, annual 
variation was high, and trends were less convincing than 
for increasing Hg contamination of grey-headed albatrosses 
at South Georgia since the late 1980s (Mills et al. 2020a). 
Increasing Hg contamination could indicate increased envi-
ronmental exposure within feeding areas (i.e., changes in 
bioavailability of MeHg within foraging areas), potentially 
due to increasing anthropogenic Hg emissions in the South-
ern Hemisphere across our study period (Streets et al. 2017). 
Shifts in diets and foraging areas towards more contaminated 
prey or regions could also explain temporal variation. Diet 
composition of albatrosses and petrels can be highly variable 
among years, at least during the breeding season (Mills et al. 
2020b, 2021). Quantifying diets and foraging areas along-
side levels of Hg contamination can help interpret trends, but 
stable isotope data were not available in all previous studies 
(Table 2). More work is required to understand long-term 
drivers and trends in contamination of seabirds in general, 
including the relative importance of natural and anthropo-
genic changes in the environment. Museum specimens may 
be a useful source of material for extending time series for 
some species and sites.
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