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INTRODUCTION

In the field of ecotoxicology, scientific studies on
fish originated in the 1930s (e.g. Jones 1938, 1939)
with the purpose of testing the effects of various
chemicals on fish, including toxic trace elements usu-
ally released in aquatic environments by anthro-
pogenic activities (Förstner & Wittmann 2012). Since
then, fish have proved their suitability for ecotoxico-
logical studies (Braunbeck et al. 1998), given their
broad species diversity, the wide range of diets (from

algae to other fish) and their broad geographical dis-
tribution in various environments. Furthermore, the
relevance of fish in ecotoxicology is also connected to
their ecological and economic importance as well as
to the fact that they are important components of
environmental risk assessments (Holmlund & Ham-
mer 1999, Tidwell & Allan 2001).

Fish accumulate trace elements through both the
dissolved and particulate pathways, but diet appears
to be the predominant source for many elements (e.g.
Xu & Wang 2002, Mathews & Fisher 2009). There -
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fore, understanding the trophic transfer of trace ele-
ments is a key aspect in assessing accumulation
capacities in fish and their exposure to contaminants.
Since distinguishing the contribution of diet to over-
all bioaccumulation is complex to perform on individ-
uals collected in the field, the experimental approach
appears to be the best option to assess unambigu-
ously the trophic transfer of trace elements in fish
(Wang & Fisher 1999).

One of the most relevant parameters for quantify-
ing trophic transfer of a contaminant is the assimila-
tion efficiency (AE) from ingested food. AE is a first-
order physiological parameter that can be compared
quantitatively among trace elements, fish species,
diets and environmental conditions (Wang & Fisher
1996, Croteau et al. 2007). Because dietary trace ele-
ment bioaccumulation is directly related to AE, this
parameter is important in order to understand and
predict global trace element uptake (Wang & Fisher
1996, Luoma & Rainbow 2005, Croteau et al. 2007). It
is thus widely used in modern ecotoxico logy studies.
However, the concept of AE sometimes appears un -
clear in the literature due to some discordances in the
way it is defined.

This review provides a general definition of the
concept of AE, critically examines the methodologies
used to date for AE measurements in fish and dis-
cusses the recent improvements made on the differ-
ent methods. It also extensively analyses the results
of trace element AEs in fish reported in the literature.
Finally, it presents a summary of perspectives for
guiding future studies on the subject. The review
complements the one on AE in invertebrates by
Wang & Fisher (1999).

THE NEED TO CLEARLY DEFINE THE 
CONCEPT OF AE

AE is a physiological parameter determined to
under stand the trophic transfer of chemicals in
orga nisms. However, as Wang & Fisher (1999)
pointed out in their review, there are still discrepan-
cies in experimental studies regarding the definition
of AE. According to those authors, ‘In bioenergetic
studies, absorption of an element or compound
equals total ingestion of the substance minus its
quantity in faecal matter and is the sum of assimila-
tion and post-digestive soluble excretion (i.e., loss of
material into the dissolved phase after post-inges-
tive metabolism)’ (p. 2034). According to this defini-
tion, AE is the fraction of the ingested element or
compound that is incorporated into biological tissue,

whereas absorption efficiency is the fraction of the
ingested element or compound that passes through
the gut epithelium by passive and active transports
(Brett & Groves 1979, Penry 1998). Assimilation thus
equals absorption minus defecation and excretion.
This definition of AE is in line with Warnau et al.
(1996), who indicate that AE could be defined as the
fraction of the ingested material that is tightly
bound (i.e. incorporated) in the organs and tissues
of a given organism. From a theoretical point of
view, the difference between absorption and assimi-
lation is obvious, but in practice, it is difficult to
delineate quantitatively these 2 mechanisms at the
whole-body level, because during gut transit, these
physiological processes can occur at the same time.
Thus, another physiological parameter is used to
determine the required time to assess AE (e.g. Ni et
al. 2000, Xu & Wang 2002): gut transit time (GTT),
i.e. the duration that a food ration spends in the
digestive tract between its ingestion and its defeca-
tion. It is during this phase that the absorption of
chemicals takes place. AE measurement based on
GTT determination has some limitations, which
must be taken into account. During GTT, it is diffi-
cult to ensure that only absorption of the ingested
compounds takes place, since excretion can also
already intervene; hence a part of the absorbed
fraction can already have been excreted. After
intestinal absorption, compounds or trace elements
are conveyed through the bloodstream first to the
liver and are then distributed to various organs via
the heart. However, a part of them can be directly
excreted via biliary secretions discharged into the
intestine, or later through the gills and the urine
(Wood 2011). Furthermore, there are some assump-
tions that egestion direct ly from the gut can occur
through compounds secreted with digestive juices
or sloughed inside de tached enterocytes and then
evacuated via the faeces or rectal fluid (Wood 2011).
In addition, we assume that part of the non-assimi-
lated fraction might re main somewhat longer in the
digestive tract, associated to the intestinal mucus,
which can play a regulatory role in the absorption of
ingested elements such as trace elements (Warnau
et al. 1996, Bury et al. 2003). These factors may thus
affect the accuracy of AE determinations. This fact
raises the crucial importance of the design and
duration of experiments (i.e. the duration of the
feeding period and the time during which depura-
tion is followed after ingestion of food) in order to
accurately determine AE (see also ‘How the dura-
tion of depuration influences AE determination’
below).
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DETERMINATION OF AE IN FISH

AE of macromolecules in fish

Sometimes AE of a given element or compound is
calculated as the difference between quantity in -
gested (quantity present in the food) and quantity
egested (quantity in the faeces). This method, the so-
called mass-balance, has been used to study the AE
of nutrients such as proteins and lipids in farmed fish.
Using this method, AE can be calculated as follows:

(1)

However, urinary and branchial excretions are not
taken into account in this calculation, which limits its
accuracy. Furthermore, to be efficient, the mass-bal-
ance approach requires an accurate quantification of
the studied compound in the food and the faeces.
Challenges may appear at this stage, such as the abil-
ity to collect faeces before their complete or partial
dissolution in the water, which could lead to the loss
or partial loss of the studied element (Choubert 1999).

Another method, based on the same mass-balance
principle, uses an inert tracer, such as Cr2O3 (Austreng
1978, Austreng et al. 2000), TiO2 (Weatherup & Mc -
Cracken 1998, Vandenberg & De La Noüe 2001,
Richter et al. 2003) or acid-insoluble ash (Sarker et
al. 2016). Incorporated in the compounded feed or
ingredients/ constituents of the food matrix (Tacon &
Rodrigues 1984, Morales et al. 1999), the inert tracer
allows correcting the AE measurement for possible
post-egestion loss. In this case, AE can be calculated
using the following equation (Maynard & Loosli 1969):

(2)

This ratio is widely used in aquaculture nutrition
since it does not require a complete recovery of fae-
ces, as is the case for the original approach. Its use is
nevertheless limited nowadays given the fact that the
selected inert marker must fulfil several characteris-
tics, which are not easily met. The inert marker, in
principle, should: (1) be absolutely inert, without a
physiological effect on the fish; (2) not be absorbed or
metabolized; (3) not influence absorption and/or
digestion; and (4) be easily and quickly measurable
(Choubert 1999). To the best of our knowledge, no
marker perfectly fits all these conditions at once. Fur-
thermore, this method does not take into account uri-
nary and branchial excretion. Despite some dis -

advantages, this method is however still used in
aquaculture studies to determine the AE of macro-
molecules such as proteins and lipids in fish (e.g.
Sarker et al. 2016). With an increasing research inter-
est in the trophic transfer of trace elements in fish,
other methods for AE determination, developed
specifically for these elements, have emerged.

AE of trace elements in fish

Use of radiotracers

One of the most efficient methods to determine AE
of trace elements in fish is the use of radiotracers. As
radioisotopes have similar biochemical properties to
their non-radioactive analogous isotopes, they can be
used as tracers to follow an element in an organism.
Thus, the 2 approaches described in the previous
section (mass-balance and ratio; see ‘AE of macro-
molecules by fish’ above) can be applied in the deter-
mination of AE for trace elements, using radiotracers
in aquatic organisms such as fish.

In addition to the 2 previous methods, the use of
radiotracers and particularly gamma-emitting radio-
tracers has allowed the development of an efficient
ap proach in the determination of the AE of trace ele-
ments: the pulse-chase feeding method. It has many
advantages that explain its widespread use in the lit-
erature (e.g. Xu & Wang 2002, Wang et al. 2012, Pouil
et al. 2016). The use of gamma-emitting radioiso-
topes allows radio-counting fish alive, thus limiting
the number of individuals to sacrifice and generating
data with reduced biological variability (Warnau &
Bustamante 2007). In the pulse-chase feeding me -
thod, fish are fed radiolabelled food (natural prey or
compounded feeds) and are radio-counted just after
the radiolabelled feeding. Then, fish are regularly
counted alive in order to describe the depuration
kinetics of the radiotracers and thereby to determine
the AE (see details below in ‘How the duration of
depuration influences AE determination’). The deter-
mination of AE based on a kinetic approach is done
from a single feeding with a radiolabelled food item.
The fish are allowed to feed on the radiolabelled food
for a short period of time (shorter than their GTT;
usually from 5 min to 2 h) to ensure that the radioac-
tivity ingested can be accurately quantified without
any possible radiotracer recycling from seawater due
to leaching from the radiolabelled food, leading to an
overestimation of AE. Recently, Pouil et al. (2017b)
provided an experimental validation of the single-
feeding method for the determination of Co, Cd, Mn

AE (%)
ingested faecal

ingested
100= −⎛

⎝⎜
⎞
⎠⎟ ×

AE (%)
% inert marker in the food

% inert mark
= −1

eer in the faeces
% element in the faeces
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(
×

mment in the food ) ×100
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and Zn AEs in turbot Scophthalmus maximus fed
with radiolabelled compounded food. Ni et al. (2000)
had earlier compared AEs of Cd, Cr and Zn in the
mudskipper Periophthalmus modestus and the glas -
sy Ambassis urotaenia obtained using mass-balance
and kinetic approaches, and concluded that the 2
approaches give similar results.

Improvements in the AE calculation

Two methods are commonly used to calculate trace
element AE using gamma-emitting radiotracers. For
both methods, the proportion of trace elements re-
tained in the fish during the depuration period is fol-
lowed using regular gamma counting of live organ-
isms. In the first method, AE is determined at a given
time and expressed as a percentage of trace element
retained after the GTT from the total ingested fraction
(e.g. Xu & Wang 2002, Van Campen hout et al. 2007,
Goto & Wallace 2009). Usually, in this method (the
‘short-term’ approach), the depuration is followed
over a short time (i.e. a few hours or a few days;
Table 1); it therefore provides a rapid insight into the
transfer of trace elements in fish from their food. The
second method is based on the actual determination
of the trace element depuration kinetics. This method
has been extensively used in radioecological studies
on aquatic organisms and is improved by the use of
multi-exponential models, in which parameters are
solved by iterative adjustment (e.g. Warnau et al.
1996, Bustamante et al. 2002, Metian et al. 2010, Pouil
et al. 2016). Depuration of trace elements is typically
expressed as the percentage of remaining radioactiv-
ity (radioactivity at time t divi ded by the initial ra-
dioactivity measured in the organism at the begin-
ning of the depuration period × 100). Depuration
kinetics are generally best fitted by a 2-component
exponential model:

(3)

where At and A0 are the remaining activities (%) at
time t (d) and 0, respectively; ke is the depuration rate
constant (d−1). The ‘s’ and ‘l’ subscripts are related to
the short- and long-lived component, respectively.
The ‘s’ component mainly represents the depuration of
the radiotracer fraction that is weakly associated with
the organisms and rapidly eliminated (i.e. the radio-
tracer fraction associated with the faeces). The ‘l’ com-
ponent mainly describes the depuration of the radio-
tracer fraction that is actually absorbed by the or ga nism
and eliminated slowly (Hubbell et al. 1965, Reichle
1967, Reichle et al. 1970, Whicker & Schultz 1982,

t
k t k tA A e A e0s 0l

es el= × + ×− −
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Warnau et al. 1996). The long-lived component allows
the estimating of AE by calculating the y-axis intercept
of the ‘l’ component of the radiotracer ingested with
food (AE = A0l; Reichle 1967, Fowler & Guary 1977,
Miramand et al. 1982, Warnau et al. 1996). In some
studies, the depuration of the assimilated fraction of
trace elements was shown to be very slow (e.g. Pouil et
al. 2015, 2016). When the long-term depuration rate
constant (kel) is not significantly different from 0, the ‘l’
component of the exponential model can be simplified
and replaced by a constant (e.g. Pouil et al. 2015, 2016)
and the equation be comes:

(4)
with A0l = AE.

This method requires that the fish be depurated for
a sufficiently long period of time to get an accurate
determination of the slope of the slowest depurating
compartment. Usually, the depuration of the fish is fol-
lowed for several weeks (Table 1). Because all the ex-
cretion processes (urinary, branchial and biliary) are
taken into account, it is the most robust method to ac-
curately determine AE (see next subsection, ‘How the
duration of depuration influences AE determi nation’).

From a mechanistic point of view, 3 different pha -
ses occur during the depuration of an element. The
first phase, usually a few hours after the feeding, is
very rapid and corresponds to the passage of the
ingested food from the stomach to the intestine
where the absorption process occurs (Baines et al.
2002, Dutton & Fisher 2011), i.e. the ‘s’ component
described under Eq. (3). The second phase, usually in
the first week of depuration, is dominated by the
occurrence of the absorption and excretion processes
(Baines et al. 2002, Dutton & Fisher 2011, Pouil et al.
2016). During phases 1 and 2, as shown by Pouil et al.
(2017a), almost all the trace elements ingested are
distributed in the stomach and the intestine. Then,
the third phase reflects the physiological turnover
from the slowest depurating compartment after ab -
sorption and excretion (Wang & Fisher 1999). The
loss of trace elements during this phase is reduced
and the body burden of trace elements is stabilizing.
Phases 2 and 3 are usually difficult to resolve using
depuration biokinetic models; in a 2-component ex -
ponential model, these phases are included in the
‘l’ component.

How the duration of depuration influences AE
determination

From a practical point of view, the duration of the
follow-up period of the depuration, as defined by

the experimenters, is decisive to ‘catch’ these bio-
logical processes. As explained above (see ‘The
need to clearly define the concept of AE’), GTT can
be used to estimate the duration needed for the
experiments in order to determine AE accurately.
Some authors estimate the GTT by the frequent
collection and the radio-counting of faeces subse-
quently to single-feeding, and thus GTT ends when
the last radioactive faeces have been collected (e.g.
Ni et al. 2000). Thus, the duration of depuration is
chosen to cover the GTT (in general, from 24 to
72 h in fish; e.g. Xu & Wang 2002, Van Campen-
hout et al. 2007, Goto & Wallace 2009). When the
depuration follow-up is made over a period close to
GTT (the ‘short-term’ approach), AE is determined
at a given time and expressed as a percentage of
the trace element retained. This approach does not
allow taking into consideration the third phase of
the depuration kinetics (i.e. when physiological
turnover occurs after absorption and ex cretion), as
is usually achievable when the duration of de -
puration extends over several weeks (i.e. the ‘long-
term’ approach).

In order to compare AEs obtained using both the
‘short-term’ and ‘long-term’ approaches, statistical
comparison (Wilcoxon-Mann-Whitney non-paramet-
ric test) was done on data provided by Pouil et al.
(2017b, their supplementary material) for 54Mn re -
maining activities at different times throughout a
21 d depuration in turbot S. maximus fed with com-
pounded pellets (Fig. 1). Remaining activities were
stable from Day 2 (i.e. <24 h after GTT) up to
Day 21 after the beginning of the depuration (p >
0.05). However, statistical comparison between the
individual AE estimated as the percentage of re -
maining activity after 2 d (‘short-term’ approach)
and the individual AE obtained by fitting a model
using data collected over 21 d (‘long-term’ ap -
proach) indicated a significant overestimation of AE
by the ‘short-term’ ap proach (p = 0.04). This exam-
ple shows that, in a given dataset, the ‘short-term’
and ‘long-term’ approaches may lead to different
AE estimations. Such bias can be avoided using a
sufficiently long period of depuration that encom-
passes both the absorption and the excretion pro-
cesses and allows an accurate delineation of the AE.
In the ‘short-term’ depuration ap proach, part of the
excretion processes occurring during the last phase
of the depuration are assumed to be negligible,
which is obviously not correct. Therefore, this ap -
proach should be only considered after a careful
investigation of the depuration processes in the
given experimental conditions.

A A e A0s 0l
es= × +−k t

t
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REVIEW OF TRACE ELEMENT AE STUDIES
IN FISH

AE related to trace elements 
and depuration duration

Fig. 2 shows reported ranges of AEs for different
essential (i.e. metabolically required) and non-essen-
tial (no known biological role) elements in fish. This
over view of results from 35 experimental studies
reveals that the findings regarding trace element AE
are overall similar regardless of the method of deter-
mination (i.e. ‘short-term’ and ‘long-term’ approaches;
Fig. 2A,B). However, using Zn, one of the most stud-
ied elements, analysis of the coefficients of variation
(estimating dispersion of values from the average) for
the AE values reveals that the ‘short-term’ approach
leads to higher AE variability than the ‘long-term’
approach. This analysis provides an overall picture of
AE variability according to the approach adopted for
its determination. These findings, however, must be
nuanced by the fact that other experimental factors
that can also affect AE variability (e.g. objectives of
the study, number of organisms, etc.) are not taken
into account.

Non-essential elements (Ag, Am, As, Cd, Cs, Hg(II),
Po) and a compound (methylmercury, MeHg) are the
most studied with, in particular, Cd AE values avail-
able for 15 species of fish (Fig. 2, Table 1). Among the
6 reported essential elements, Co, Cu, Cr, Mn, Se and
Zn, the latter element is the one with the most AE val-
ues available (>180 values, expressed as means ± SD).
Analysis of the AEs for the different trace elements
shows that there is no obvious relationship between
the essential character of a trace element and its as-
similation by the fish, in contrast to what has been ob-
served in invertebrates (Wang & Fisher 1999). Inter-
estingly, MeHg and Cs, which are non-essential, are
very efficiently assimilated by fish. The high AE val-
ues explain for a large part why MeHg and Cs bio-
magnify in aquatic food webs in both freshwater and
marine ecosystems (e.g. Garnier-  Laplace et al. 2000,
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Fig. 1. Remaining activities of 54Mn during 21 d depuration
in turbot Scophthalmus maximus (n = 12) fed radiolabelled
pellets. Data from Pouil et al. (2017b, their supplementary
material). For comparison, assimilation efficiency (AE) ob-
served after 2 d of depuration (‘short-term’ approach) and
AEs estimated using kinetic modelling (‘long-term’ ap-
proach) are indicated. Error bars are ±SD. Different lower-
case letters indicate significant differences (p < 0.05). Note: 

x-axis scale is not linear

Fig. 2. Comparison of assimilation efficiency (AE) values of
essential (white bars) and non-essential (grey bars) elements
assessed in fish, in (A) ‘short-term depuration’ and (B) ‘long-
term depuration’ experiments. Height of the boxes is propor-
tional to the number of observations; thick black line repre-
sents the median; dashed line represents the range. Extreme
values are not represented. Number of studies are enclosed
in square brackets. Data extracted from the literature are 

detailed in Table 1. MeHg: methylmercury
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Zhao et al. 2001, Harmelin-Vivien et al. 2012, Lavoie
et al. 2013, Pan & Wang 2016). Among the most effi-
ciently assimilated elements, Se is an essential trace
element known to have an antagonistic action with
Hg in aquatic orga nisms (Belzile et al. 2006). Field in-
vestigations have shown that high Se concentrations
may force a preferential assimilation of this element
over Hg through a competitive adsorption on binding
sites. The occurrence of Se at high concentrations
may also restrict the solubility and bioavailability of
Hg to aquatic organisms or reduce its methylation in
freshwater ecosystems (Cuvin-Aralar & Furness 1991,
Belzile et al. 2006, Yang et al. 2008). To the best of our
knowledge, no experimental study has investigated
such an effect in fish.

Factors influencing trace element AEs in fish

In theory, AE can be influenced by both abiotic and
biotic factors, because both potentially affect fish
physiology and bioavailability of, or bioaccessibility
to, trace elements. Biotic factors have been the most
studied in the literature (Fig. 3). The AE of trace ele-
ments in fish depends on the relationship between
prey and their predators (Fig. 3). Thus, it is possible
to distinguish 2 types of biotic factors: those related to
prey and those related to predators.

Numerous studies have investigated the influence
of food quality (type of natural prey and compounded
food) on AE in fish. It has been shown for example
that, in the same predator species, AEs can be very

different depending on the type of food in-
gested (e.g. Dutton & Fisher 2011, Wang
et al. 2012, Pouil et al. 2016). Using a
mechanistic approach, some authors have
studied the factors related to the prey (bi-
valves and oligochaetes) that could ex-
plain these differences. In particular,
based on studies initiated with inverte-
brates (crustaceans; Wallace & Lopez
1996, Wallace & Luoma 2003), the rela-
tionship between the subcellular fraction
of trace elements in food and the AE ob-
served in predators has been investigated
in several species (Zhang & Wang 2006,
Dang & Wang 2010). However, the results
showed contrasts. Some studies highlighted
a positive relationship between the cy-
tosolic fractionation of Cd, MeHg, Se and
Zn in the prey and the AEs of these ele-
ments in different species of fish fed zoo-
plankton, molluscs or selected fish tissues
(Zhang & Wang 2006, Dang & Wang
2010). However, more recently, Pouil et al.
(2016) found no obvious relationship for
essential elements (Co, Mn and Zn) in ju-
venile turbot Scophthalmus maximus fed
more complex food matrices (complex
pluricellular natural whole prey).

Interspecific comparisons of trace ele-
ment AEs have also been made (e.g. Ni et
al. 2000, Pouil et al. 2017a). The differ-
ences observed were often related to the
trophic ecology of the organisms or their
phylogeny. The influence of predator size
(i.e. allometry) on AE was also investi-
gated in black seabream Acanthopagrus
schlegeli (Zhang & Wang 2007). In that
study, Cd AE was independent of body
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Fig. 3. Processes controlling the assimilation efficiency of metals in preda-
tor fish. Stars in brackets indicate that the process has been studied in the
literature, with the number of stars proportional to the quantity of informa-
tion available in the literature. Absence of stars: the process has not yet 

been investigated
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size, whereas Se and Zn AE increased with predator
size. Guo et al. (2016) showed that Cu AE increased
during development from larvae to adults in the fish
model Oryzias melastigma.

Regarding the feeding behaviour of predators, al -
though this parameter appears to be important in the
understanding of trace element assimilation, there
are still only a few studies that have tackled this
aspect. Among these, Van Campenhout et al. (2007)
demonstrated in common carp Cyprinus carpio that
the frequency and rate of ingestion have a significant
impact on the AE of Cd and Zn. Similar findings were
reported for the AE of Cu in black seabream juve-
niles (Guo et al. 2015).

The influence of water temperature on AE has also
been investigated (Van Campenhout et al. 2007).
Those authors observed that decreasing the temper-
ature from 25 to 15°C did not influence Cd AE,
whereas a significant decrease in Zn AE was found.
The influence of trace element pre-exposure in the
environment has also been considered in a few stud-
ies. It was for instance shown that Ag AEs were
higher in waters highly contaminated by this element
(Long & Wang 2005b, Boyle et al. 2011). However, no
effect was observed for Cd or Zn (Zhang & Wang
2005, Boyle et al. 2011).

Besides temperature or element concentrations,
there is still a lack of knowledge regarding the possi-
ble effects of other abiotic factors on AE in fish. The
limited amount of information available might result
from the non-obvious connection between these fac-
tors and the trophic transfer of metals. Abiotic factors
such as salinity or pH are generally recognized for
their ability to influence trace element speciation in
the water and thus their impact on uptake from the
gills rather than AEs from the diet. These factors can
however also influence fish physiology, with possible
indirect effects on metal uptake through the food.

Salinity, which is a key parameter in brackish and
marine environments that influences both bioavail-
ability of trace elements and fish physiology, has been
investigated in fish (Ni et al. 2005, Zhou et al. 2017).
Ni et al. (2005) found no significant differences in Cd,
Se and Zn AEs in the mudskipper Periophthalmus
modestus acclimated from 10 to 30 psu, whereas Zhou
et al. (2017) found that Cu AEs measured in the white-
spotted spinefoot Siganus canaliculatus de creased from
33 to 10 psu and increased at 5 psu. Furthermore, those
authors found that high dietary Cu pre-exposure re-
duced its AE regardless of the salinity (Zhou et al. 2017).

Recently, environmental pH, known to influence
the digestive physiology of fish (Zhang & Wang 2006,
Dang & Wang 2010), was considered to explore the

possible effects of ocean acidification on stomach pH
and the assimilation of essential elements in clown-
fish Amphiprion ocellaris (Jacob et al. 2017) and tur-
bot S. maximus (Pouil et al. 2017b). Both studies
showed no significant effect of environmental pH on
the AE of Ag, Co and Zn.

CONCLUSION

AE is a key parameter in the trophic transfer of trace
elements in fish and is therefore widely investigated in
ecotoxicology and aquaculture research. Despite its
extensive use, there are still divergences in the defini-
tion of the AE concept, which may affect its experimen-
tal determination. We have provided here a critical
analysis of the methods used to determine AE in fish in
order to provide guidance for future studies. Among
the 35 experimental studies of trace element AE in fish
we found in the literature, the influence of environ-
mental variables in the trophic transfer of these ele-
ments has received little attention. This research topic
continues to offer ex citing and challenging scientific
questions for eco toxicology and fish nutrition research.
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