Seafloor absolute positionning : experiements and processing

Pierre SAKIC*, Valérie BALLU, Jean-Yves ROYER

LIENSS/Université de LA ROCHELLE IUEM/LGO Brest

* Now @ GeoForschung Zentrum, POTSDAM

September 2018

Absolute seafloor positioning

GNSS/Acoustics (GNSS/A)

- Propagation time
- Sound speed profile (CTD measures)
- Absolute position & attitude of the plateform
- On-board ties
- Inter-beacons distance
- Inter-beacons depth differences (pressure sensors)

Surface Segment Experiments

Topometric Ties (2/2)

Kinematic GNSS benchmarking

Differential positioning

- TRACK
- RTKLIB

Reference station at 240km

PPP
positioning
GINS
APPS (GIPSY)
NRCAN-PPP

 1σ planimetrics precision : ~ 20mm 1σ altimetric precision : ~ 50mm

Error budget

Nature	Error
Topometric Ties	
Kinematic absolute positioning	
Water column temporal variations	
Ocean spatial heterogeneities	

Inversion Method

1st mission : The GEODESEA Mission

- 17-22 June 2015
- N/O Téthys II
- IUEM/LDO, LIENSs & Sonardyne collaboration
- 37 h 20 of acquisitions (13500 exploitable pings)

Underwater Segment (1/2)

UTM coordinates (m) 2300m UTM coordinates (m)

3 Sonardyne *Compatt* **Transponders**

ca. 2300m deep

Surface Segment

Acoustic Head + IMU

GNSS in the extension

CTD Probe 1/2 time a day

GEODESEA mission

Results

Used session : 21th June, 10h of acquisition, 13500 pings

Point	5203	5305	5307	Barycentre
Local N (m)	1459.5193	-478.5392	-926.6242	18.1187
Local $E(m)$	329.0651	-1348.9036	1293.2587	91.1401
Local D (m)	2407.1061	2383.5635	2375.9380	2388.8692
σ_N (m)	0.0124	0.0122	0.0120	0.0086
σ_E (m)	0.0109	0.0103	0.0104	0.0074
σ_D (m)	0.0068	0.0072	0.0072	0.0050
ITRF X (m)	4592277.2989	4593843.1724	4593793.7191	4593304.7301
ITRF Y (m)	632238.9572	630760.6447	633420.8986	632140.1668
ITRF Z (m)	4362678.0733	4361287.0891	4360966.9901	4361644.0509
Latitude (deg)	43.45493980	43.43748810	43.43345360	43.44196128
Longitude (deg)	7.83888250	7.81814770	7.85079410	7.83594147
Hauteur (m)	-2400.3357	-2376.8086	-2369.1451	-2382.2740

Coordiates of the 3 beacons and the barycenter in local and global frames, and formal standard deviations

No apriori information on beacons depth in this experiment

Residual analysis

2nd mission : DIVACOU/CANOPUS Campaign

- CANOPUS Project : Collaboration between iXblue, IFREMER, CNRS/IUEM-LDO/LIENSs & Télécom Bretagne
- N/O Europe, 10-16 May 2017 off Toulon
- Test of the new generation of seafloor beacons
- 2 days dedicated to geodetic protocol

DIVACOU/CANOPUS Results

pings bruts / utilisées / ratio période et durée d'observation	Jour 2 : 15 mai ≈8:00-6:00(J+1) TU, 22h
Balise 1	8896 / 8699 (97,79 %)
Balise 3	11131 / 11060 (99,36 %)
Balise 4	7570 / 7566 (99,95 %)

Available pings

Sigmas	(barycentre,	B1, B3, B4)
East	North	Down
0.10419864	0.08643241	0.04830886
0.1682498	0.14039302	0.07593201
0.11943442	0.10225967	0.05384505
0.15016492	0.1209041	0.07310497

Formal Sigmas (m)

Key points & perspectives

- development of an inversion method
- On-board experiment ⇒ Minimization of the surface platform (Need of an ASV)
- A better consideration of the sound speed variations in the inversion

Thank you for your attention

Temporal Sound Speed Variation Influence

Sound Speed Update

