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HIGHLIGHTS GRAPHICAL ABSTRACT

We quantified the blood Hg concentra-
tions of adult black-vented shearwaters.
Hg concentrations were moderate and
similar between sexes.

The foraging habitat explained variation
in Hg among birds.

The individual trophic level did not ex-
plain Hg exposure.

Hg concentration was negatively corre-
lated with blood antioxidants.
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ocean health and sensitive victims of Hg toxic effects. Hg negatively affects almost any aspect of avian physiology;
thus, birds prove valuable to study the effect of Hg exposure in vertebrates. The Black-vented Shearwater is en-
demic to the North-Eastern Pacific Ocean, where it forages along the Baja California Peninsula during the breed-
ing period. The area has no industrial settlement and is in the southern portion of the California Current System
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Baja California peninsula

individuals foraging inshore had higher Hg concentrations than those foraging more offshore (reflected by 5'3C).

Shearwaters having higher concentrations of Hg had lower activity of the antioxidant enzyme glutathione perox-
idase and showed lower non-enzymatic antioxidant capacity. Levels of plasma oxidative damage, superoxide dis-
mutase and catalase were not associated with Hg. Our results indicate that (i) the foraging habitat is the factor
explaining Hg exposure and (ii) there is some evidence for potential harmful effects of Hg exposure to this sea-
bird species of conservation concern.

Capsule: The foraging habitat is the factor explaining Hg exposure in seabirds and we observed potential harmful
effects of Hg exposure in a seabird species of conservation concern.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

One of the most toxic elements to human health and wildlife is Mer-
cury (Hg), especially in its methylated form Me-Hg (Eagles-Smith et al.,
2018), which accumulates in the tissues of living organisms (Mason
etal., 1995). Several studies have reported ecologically relevant concen-
trations of Hg in wildlife in North America (Scheuhammer et al., 2016;
Weiss-Penzias et al., 2016; Zhang et al., 2016) and, to a lesser extent,
in Central and South America (Di Marzio et al., 2019; Sebastiano et al.,
2016; Sebastiano et al., 2017a). In Mexico, most studies have focused
on the Gulf of California, especially for the high presence of industrial,
agricultural, and mining activities (Sanchez-Rodriguez et al., 2001). Re-
cent work on 14 fish taxa from Mexico revealed low Hg levels; thus, Hg
is not expected to cause health issues to local fish-eating birds (Elliott
et al.,, 2015). However, several studies reported the presence of rela-
tively high concentrations of Hg in aquatic birds from this region
(Lerma et al., 2016; Ruelas-Inzunza et al., 2009). To the extent of our
knowledge, no studies have to date investigated both the presence
and the effect of Hg exposure on local wildlife. Under the predictions
that environmental concentrations of Hg will rise in coming years and
the impact of Hg exposure is likely to be exacerbate by climate change
(Krabbenhoft and Sunderland, 2013; St. Pierre et al., 2018; Stern et al.,
2012), it is crucial to investigate the concentration of this ubiquitous el-
ement in seabird tissues and to provide early warning of its effects on
their health status. Indeed, although the detrimental effects of Hg expo-
sure in captive birds have long been known, we still have a poor under-
standing of the effects of sublethal Hg concentrations on individual
health of free-living birds (Whitney and Cristol, 2017), and their conse-
quences at the population level (Goutte et al., 2014a; Goutte et al.,
2014b), particularly in bird species of conservation concern (Pacyna
et al., 2017; Tsao et al., 2009).

Seabirds are long-lived top predators of marine food webs, bearing
high levels of Hg (Rowe, 2008); thus they prove valuable to study the
effects of Hg exposure in birds. A recent review pointed out that Hg
might negatively affect almost any aspect of avian physiology
(Whitney and Cristol, 2017). However, little work has assessed so far
the effects of Hg on physiological traits of wildlife. One way through
which Hg might impact on organism function is through the increase
of molecular oxidative damages and disruption of antioxidant defences
(Ercal et al., 2001). Because of its great molecular affinity for thiols and
selenium (Ralston and Raymond, 2018), Hg may directly impact on the
redox mechanisms involving glutathione (reviewed in Whitney and
Cristol, 2017), such as antioxidant enzyme activity of glutathione perox-
idase (GPx). Previous works on seabirds have shown that exposure to
Hg might increase oxidative damage to lipids (increased oxidative dam-
age, Costantini et al.,, 2014; increased antioxidant oxidation and enzy-
matic antioxidant activity, Kenow et al., 2008), thus oxidative status
markers provide a fundamental tool to determine the impact of Hg on
seabirds.

During our long-term monitoring project on the Black-vented Shear-
water (Puffinus opisthomelas) breeding on Natividad Island, we ob-
served some cases of reproductive failure. Therefore, we hypothesized
that the shearwater population might be exposed to Hg concentrations
of concern that may affect their health status.

This study main goal was thus to quantify short-term Hg exposure
using blood samples of adult Black-vented Shearwaters during the
breeding season. We further assessed the antioxidant status and oxida-
tive damage levels to evaluate whether Hg impacts on the oxidative sta-
tus. Finally, using carbon and nitrogen stable isotope ratios (6'C and
815N, respectively) as proxies, we determined the main routes of
contamination.

2. Materials and methods
2.1. Species and study site

The Black-vented Shearwater is a burrow-nesting seabird with noc-
turnal colony attendance and a single egg clutch. It is endemic to Mexico
and distributes along the Pacific coasts of North America, and [UCN (In-
ternational Union for Conservation of Nature) consider it as near threat-
ened (Birdlife-International, 2016). Generally, it feeds ashore on the
continental shelf in high productivity areas, mainly on anchovies, sar-
dines, and squid (Keitt et al., 2000a). According to the described diet
of the species (Keitt et al., 2000b), the Black-vented Shearwater ex-
pected isotopic values should be between —20 and — 16%. of 5'3C.
The species owns a very restricted area of distribution especially during
the breeding season, where 95% of the global population breeds sym-
patrically on Natividad Island, Mexico (27° 86’ 25.59” N, 115° 17’
14.18” W; Fig. 1), within the El Vizcaino Biosphere Reserve. Birds arrival
to the colony starts in December with prospecting individuals reinforc-
ing pair bonds before egg laying, usually occurring from February
through March. Eggs hatch in late April-May and chicks are ready to
fledge in July (Keitt et al., 2000a; Keitt et al., 2003). Natividad Island is
of conservation interest, hosting “globally significant populations” of
the Black-vented Shearwater, according to the IBA criteria (BirdLife-
International, 2010).

2.2. Spatial analysis

Using dataloggers specifically designed for this species (Axy-Trek,
Technosmart Europe, Rome, Italy), 11 breeding Black-vented Shearwa-
ters were tagged. Dataloggers were attached to the back feathers of the
birds (Tesa® 4651, Tesa SE, Hamburg, Germany) using 4 strips of ma-
rine tape, weighing a total of 11 g (9 g of the instrument plus 2 g of
tape; < 5% of body mass). Every night, until the bird returned, the colony
was visited, and no GPS equipped bird failed to return to its burrow.
Data loggers were included in this study to identify foraging areas of
males and females during the breeding season. Only three birds of
those blood sampled were equipped with dataloggers. We assumed
the foraging areas of the sampled individuals being the same of the for-
aging areas used by the tracked ones.

2.3. Data and sample collection

As part of the long-term monitoring program of the Black-vented
Shearwaters, we captured and ringed adult birds at their nests (n =
20) at the end of the incubation period (April). We measured the fol-
lowing traits: right-wing length (to the nearest millimeter using a
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Fig. 1. Foraging areas of males (light blue identifying 25% Kernels and dark blue identifying
75% Kernels) and females (orange identifying 25% Kernels and red identifying 75%
Kernels) according to tracks obtained during the breeding period. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of
this article.)

ruler), length of right tarsus from the middle of midtarsal joint to distal
end of tarsus-metatarsus (to the nearest 0.1 mm with a calliper), head
plus bill length, bill length (nearest 0.1 mm), and body mass (nearest
0.5 g using a Pesola spring balance). We collected 100 pL of blood
from the tarsal vein using heparinized syringes and needles; we stored
the samples in an ice refrigerated carrier and transported to the field lab.
We centrifuged samples after <30 min from sampling for 3 min at
12000 rpm at room temperature and we stored plasma and erythro-
cytes in separated tubes at —20 °C while on the field, and at —80 °C in
the laboratory. A drop of blood (5 pL) was collected on filter paper and
stored at —20 °C for molecular sexing using a previous protocol
(Albores-Barajas et al., 2010), at Dr. Adrian Munguia Vega Lab, La Paz,
Baja California Sur.

2.4. Oxidative status markers

The non-enzymatic antioxidant capacity was determined using the
Ferric Reducing Ability of Plasma (FRAP) test applied to erythrocytes
(i.e., Ferric Reducing Ability of Erythrocytes, FRAE) (Benzie and Strain,
1996); it was expressed as pmol Trolox/g relative to the fresh weight).
We measured three antioxidant enzymes in erythrocytes: i) the activity
of superoxide dismutase (SOD) was determined by measuring the inhi-
bition of nitroblue tetrazolium reduction at 560 nm. It was further
expressed as U/mg protein per minute; ii) the activity of catalase
(CAT) was assayed by monitoring the decomposition rate of H,0, at
240 nm and expressed as umol H,0,/mg protein per minute; and iii)
glutathione peroxidase (GPx) activity, determined by a spectrophoto-
metric method and expressed as umol NADPH/mg protein per minute.
We also used the Thiobarbituric Acid Reactive Substances (TBARS)
assay to quantify plasma lipid peroxidation. Values are expressed as

nmol of Malondialdehyde (MDA) equivalents/mL of plasma. We used
established protocols for vertebrates to perform all the analyses
(Sebastiano et al., 2017b; Sebastiano et al., 2018). Detailed protocols
are provided in the supplementary material.

2.5. Mercury and stable isotopes

The analysis of isotopic ratios of carbon (*3C/!2C or 6'3C) and nitro-
gen (">N/'N or 8'°N) is a powerful tool to identify the foraging habitat
and trophic position of wildlife (Hobson, 1999, Maruyama et al., 2001,
Rubenstein and Hobson, 2004). The 6'°N increases at each trophic
level, with consumers' tissues having values between 3 and 5%. greater
than the prey they are synthesised from (DeNiro and Epstein 1978,
Hobson and Clark, 1992, Bearhop et al., 2002). Values of 8'3C decrease
from coastal to oceanic habitats, making them useful proxies for
assessing habitat use in marine organisms (France 1995, Hobson et al.,
1997, Newsome et al., 2010).

We quantified the total concentration of Hg and both the stable ni-
trogen and carbon isotope ratios in freeze-dried erythrocytes following
previous protocols (Sebastiano et al., 2016, 2017a). Briefly, we quanti-
fied stable nitrogen and carbon isotopes using an elemental analyzer
(Flash 2000, Thermo Scientific, Milan, Italy) together with an isotope
ratio mass spectrometer (Delta V Plus with a Conflo IV interface, Thermo
Scientific, Bremen, Germany). Values were expressed in the 6 unit nota-
tion as parts per mille (%.) deviation from standards (Vienna Pee Dee
Belemnite for 8'3C and N, in air for §!°N). The analytical imprecisions
were <0.10 %. for carbon and <0.15 %. for nitrogen. Hg was measured
in erythrocytes (aliquots ranging from 0.9 to 1.4 mg) using a direct mer-
cury analyzer AMA-254 from Altec. The quality control/quality assess-
ment of Hg determination was evaluated by the analyses of
procedural blanks and of CRM (certified reference material) TORT-3
Lobster Hepatopancreas from the NRC, Canada. CRM were analysed at
the beginning, at the end of each analytical cycle and every 10 samples.
Certified Hg concentration of the CRM is 0.292 4+ 0.022 pg/g dw and the
average value (4SD) obtained in the present study was 0.285 +
0.002 pg/g dw (n = 15). Thus the recovery of the CRM was 97.7 +
0.7%. The detection limit of the AMA was 0.5 ng. We expressed the Hg
concentration as pg/g dw (dry weight). Because blood is also measured
and reported on a wet-weight basis, the formula blood (ww) = blood
(dw) = 0.21 can be used to convert dry-weight values to wet-weight
values (i.e. assuming an average 79% of moisture) as previously done
(Ackerman et al,, 2016).

2.6. Statistics

We used the software STATISTICA 10 (Tulsa, OK, USA) to run all sta-
tistical analyses. All blood samples were collected at the same site in a
single day, thus these factors were not considered. First, we analysed
the foraging ecology of species using data from GPS and isotopes. We
used a Bayesian framework to analyse stable isotope data (Jackson
et al,, 2011). We calculated the standard ellipse area corrected for
small sample sizes (SEAc), which contains approximately 95% of the
data within a set of bivariate data, in order to quantify niche width
and then compare it between sexes. For this, we used the SIBER library
for R (Jackson et al.,, 2011). We performed Spatial analyses using R 3.3.1
(R_Core_Team, 2019). Applicable significance level was set at a = 0.050
for all the analyses. Second, we ran general linear models including sex,
6'3C and 6"°N as main factors and blood Hg as dependent variable. Gen-
eral linear models were also run to test the association between blood
Hg and oxidative status markers (all as dependent variables in separate
models) while controlling for sex, which was included as a main factor.
We ran similar models to test the association between blood Hg and
body mass (dependent variable). In this case, sex was included as a
main factor and body size index as a covariate. In so doing, the model
calculates the strength and direction of the relationship between Hg
and body mass, while controlling for the effect of body size on body
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mass. Thus, the model normalises the body mass by the variation among
individuals in body size, while testing the covariation; this approach is
preferable to the use of residuals to estimate body condition index
(Garcia-Berthou, 2001; Green, 2001). The index of body size was calcu-
lated using the PC1 from a PCA on wing length, tarsus length, head and
beak length and beak width.

3. Results

We obtained 11 GPS tracks (four males and seven females) during
incubation and chick rearing period. We recorded 1493 dives for
males and 1666 for females, respectively allowing us to identify foraging
areas used (Fig. 1). On the basis of 75% Kernel Density Estimation of div-
ing points, we identified three core foraging areas: a) in shallow waters
(<200 m depth) along the northern coast of El Vizcaino Bay, and at the
edge of the continental slope (200 m isobath); b) north from Isla
Cedros; and c) south of the colony toward Ulloa Gulf. The distribution
range of the species during the breeding period is also outlined by the
25% Kernel Density Estimation in Fig. 1. We obtained no significant ef-
fect of individual or sex on latitude reached (individual: F; 1, = 0.002,
p = 0.962; sex: Fy 12 = 0.033, p = 0.858), this let us assume that the dis-
tribution obtained is representative of the breeding period.

As expected, the 8'3C values for the Black-vented Shearwater
reflected an average of —18.72 %, 6'3C, ranging from coastal waters
with a maximum of —18.02 %. 6'3C to more oceanic waters with a min-
imum of —19.83 %. 6'3C. Trophic niche did not differ significantly be-
tween sexes, with females showing a larger range toward oceanic
waters than males (female SEAc = 0.600; male SEAc = 0.404, overlap =
0.278). Neither mean values of oxidative status markers nor their vari-
ances differed between males and females (t-test, p > 0.07; Levene
test, p > 0.24).

The concentration of total Hg in erythrocytes (Table 1) averaged
1.84 4 0.28 ng/g dry weight, varied from 1.41 to 2.40 ng/g dry weight
(corresponding to an average of 0.39 £ 0.06, range of 0.30-0.50 in
wet weight). Males and females had similar blood Hg (GLM, p =
0.30). The foraging area as estimated by 6'>C was significantly corre-
lated with blood Hg: shearwaters fishing closer to the mainland had
higher Hg concentrations than shearwaters fishing offshore (GLM,
coeff. estimate 4 se: 0.34 + 0.09, p = 0.002, Fig. 2). In contrast, the tro-
phic level of shearwaters as estimated by &!°N did not correlate signifi-
cantly with blood Hg (GLM, p = 0.49, Fig. 2).

General linear models showed that sex was never a significant pre-
dictor of any oxidative status marker or body condition (p > 0.06),
thus it was removed in order to improve fitting of the models (based
on Akaike Information Criterion) and the analyses were re-run. We
found moderate and statistically significant associations between Hg
and both FRAE (GLM, coeff. Estimate + se: —7.75 4 3.43, p = 0.036)
and GPx (GLM, coeff. estimate + se: —0.0003 + 0.0001, p = 0.036)
(Fig. 3), while Hg was not associated with TBARS (p = 0.69), CAT
(p = 0.99), SOD (p = 0.71) nor with body mass normalised by the co-
variate body size (p = 0.99).

Table 1
Descriptive statistics of Hg (ug/g dw), 5'3C and 6'°N (%.) and markers of oxidative status
measured in 20 Black-vented shearwaters.

Mean Median Min. Max. Std. dev.
Hg 1.84 1.78 141 2.40 0.28
513C —18.7 —18.5 —19.8 —18.0 0.5
515N 15.8 15.8 153 16.3 03
TBARS 96.9 101.2 51.9 131.5 204
FRAE 18.1 18.6 7.0 25.9 4.6
SOD 1.01 1.04 0.47 1.50 0.22
GPx 0.0007 0.0007 0.0005 0.0012 0.0002
CAT 0.61 0.66 0.15 0.89 0.23

4. Discussion

We report in the present study the first record of blood Hg concen-
trations in an endangered seabird from Baja California Peninsula,
Mexico, the Black-vented Shearwater. The high inter-individual varia-
tion in Hg concentrations was partially explained by the foraging habitat
but not by the individual trophic level. Our results also provide the first
evidence that Hg exposure might impact the oxidative status of Black-
vented Shearwaters during reproduction, one of the critical phases of
life-history in birds.

High trophic level predators including large fish and fish-eating
wildlife can show toxic concentrations of Hg in their tissues as a conse-
quence of its biomagnification along food webs (Watras et al., 1998).
However, we found no relationship between Hg levels and the nitrogen
stable isotope 6'°N, indicating that blood Hg concentration in the pres-
ent species is not related to the trophic position. On the contrary, Hg was
strongly associated with the carbon stable isotope ratio, suggesting that
Hg concentrations may be driven by the feeding habitat of the species.
The wide range in 6'3C indicates that Black-vented Shearwaters forage
in diverse feeding habitats during the incubation period. Because the
carbon signature is higher in coastal environments, our results suggest
that birds bearing higher Hg levels in their blood are the ones feeding
closer to the coast. Considering that turnover time in plasma and cellu-
lar component of blood vary from about 3 days to about 30 days, respec-
tively (Hobson and Clark, 1993), we can assume that isotopes and Hg
concentrations obtained from erythrocytes are representative of the
breeding period and can be associated to the distribution range. Black-
vented Shearwater core foraging areas lie within the California Current
System (Soldatini et al., 2019). Breeding period northern tracks evi-
dence foraging areas in the Vizcaino Bay and along the continental
slope while southern tracks are mainly along the continental slope. Al-
though the distance between these two systems is not large, their char-
acteristics may be significantly different. These two systems provide
nutrients from different origins in the foraging area of the Black-
vented Shearwater that we can recognize in &'C differences obtained,
representing simultaneously a coastal and oceanic origin for food
ingested by shearwaters distributing in a rather reduced area. The in-
verse correlation of Hg with 6'3C suggests that shearwaters feeding in
coastal waters are more exposed to Hg, resulting in higher Hg concen-
tration in their blood. This may be due, for example, to the
biomagnification potential of Hg or to an higher concentration of dis-
solved Hg in coastal waters. For instance, oligotrophic conditions associ-
ated with low productivity (Chouvelon et al., 2018) and/or simplicity of
trophic food webs (Carravieri et al., 2020) largely influence Hg bioaccu-
mulation and biomagnification. Furthermore, mesopelagic zones con-
tain higher mercury and methyl-mercury concentrations than
epipelagic (up to 200 m in depth) areas (Fitzgerald et al., 2007),
resulting in enhanced Hg concentrations in mesopelagic fish (Blum
et al., 2013; Chouvelon et al., 2012; Monteiro et al., 1996). Upwelling
waters may thus represent an important source of Hg to surface waters
(Conaway et al., 2009) and seabird feeding in more coastal areas may be
more exposed to Hg.

Black-vented Shearwaters showed lower concentrations of Hg than
Blue-footed Booby Sula nebouxii from the same region (Lerma et al.,
2016), and than Caspian Terns Sterna caspia and Forster's Terns Sterna
forsteri from San Francisco Bay (Eagles-Smith et al., 2008), but compara-
ble blood Hg levels to that of Brown Noddy Anous stolidus and Cayenne
Terns Thalasseus sandvicensis from another region (Sebastiano et al.,
2017a). Overall, concentrations of Hg in shearwaters were similar to
those reported to induce harmful effects in certain bird species. Hg
might impact on organism function when blood concentration exceed
1.0 pg/g ww (Ackerman et al,, 2016). However, sensitivity to Hg expo-
sure may vary widely among species (Heinz et al., 2009). Some seabird
species start to suffer detrimental effect of Hg exposure at very low con-
centrations (Ackerman et al., 2016), while other species show no appar-
ent adverse effect even when exposed to higher concentrations of Hg
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Fig. 2. Relationships between blood mercury concentrations (ug/g dry weight) and the stable isotope ratios 5'>C and 6'°N (%.).The foraging area as estimated by 6'>C was significantly
correlated with the blood concentration of Hg, while the trophic level of shearwaters as estimated by 6'°N did not correlate significantly with blood Hg.

(reviewed in Whitney and Cristol, 2017). This has been related to the
protective action of Se against the toxicity of Hg, as shown in two skua
species (Carravieri et al., 2017), which by interacting with Hg, may mit-
igate its toxic effects. More generally, the ratio between Se and Hg is
used as an index to deduce potential toxicity risks (Scheuhammer
et al., 2015), thus our results warrant further work to quantify Se levels
in our species. While Hg levels in the Black-vented shearwater seem rel-
atively moderated, Gibson et al. (2014) found that even low levels of Hg
in blood altered the expression of oxidative stress-related genes in fe-
males Double-crested Cormorants Phalacrocorax auritus. Furthermore,
in the Wandering Albatross Diomedea exulans, plasma oxidative damage
increased with Hg contamination of red blood cells in females, but not in
males (Costantini et al., 2014), further underlying that sensitivity to Hg
may even vary among co-specific individuals and be exacerbated in

females, especially during certain life-history stages as reproduction
(Costantini et al., 2014).

Shearwaters exposed to higher Hg levels showed reduced non-
enzymatic antioxidant capacity in erythrocytes and activity of GPx,
suggesting that Hg might have impacted on certain pathways related
to oxidative status regulation. Hg may impact on the oxidative status
either by depleting antioxidant resources or by increasing produc-
tion of reactive oxygen species, or both (Stohs and Bagchi, 1995). Be-
cause oxidative stress impairs important biological functions,
including reproduction, birds with lower antioxidant defences
might show a limited parental investment in reproduction (Bize
et al., 2008). Although all individuals were able of breeding success-
fully, we cannot rule out that any harmful effects of Hg might emerge
later in life or that more contaminated individuals that failed to
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breed were not included in the present study. Several studies found
negative associations between oxidative stress and reproductive or
survival perspectives (reviewed in Costantini, 2014). Biochemical
evidences showed that Hg can bind to sulfhydryl groups of thiols,
such as glutathione, and to interfere with selenoproteines (i.e. gluta-
thione peroxidase). Previous work found that increasing hepatic
concentrations of Hg were significantly associated with reduced
GPx activity in Ruddy ducks Oxyura jamaicensis (Hoffman et al.,
1998). Similar results have also been reported in mallards Anas
platyrhynchos (Hoffman and Heinz, 1998). Thus, even low concen-
trations of Hg can cause a disruption of important physiological
mechanisms. To conclude, our paper recalls the global focus needed
for seabird conservation policies and the past effects of contaminants
(Risebrough et al., 1968).

5. Conclusions

We found large individual variation in the blood concentration of
Hg, which was partially explained by the foraging habitat, but not by
the individual trophic level nor its sex. Hg concentrations may be
considered as moderate to high when compared to those detected
in other species of seabirds. The significant negative correlations
we detected between Hg and two antioxidant markers indicate
that Hg might have interfered with certain pathways of regulation
of oxidative status. Given that worrying conservation status of the
Black-vented Shearwater, we urge further work to understand
whether the potentially negative effects we found may cause long-
term effects on fitness traits of individuals exposed to higher Hg
concentrations.
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