Mattei Francesco

- Équipe de rattachement : BIOFEEL
- Statut : Chercheur contractuel
- francesco.mattei*at*univ-lr.fr
Researcher, Post-doctoral fellow
La Rochelle University
Research section : CNU 67
Reference institute : INEE
Keywords : phytoplankton ecology, ecological modelling, ocean color, data analysis, machine learning
Development and implementation of a high-resolution ocean-plankton diversity and biogeochemistry model for the Pertuis Sea
Research Themes.
Analysis of the impact of environmental variability on phytoplankton ecology, ocean color, and marine ecosystem processes. Integration of in situ observations, laboratory experiments, remote sensing data, and numerical model outputs with machine learning techniques to study ecosystem dynamics. Customization of global numerical models to investigate phytoplankton evolutionary traits and competition dynamics under present and future climate conditions
Publications :
- Mattei F., Hickman A.E., Uitz J., Dufour L., Vellucci V., Garczarek L., Partensky F., Dutkiewicz S., 2025. Chromatic acclimation shapes phytoplankton biogeography. Science Advances 11, eadr9609. DOI:10.1126/sciadv.adr9609
- Mattei F., Scardi M., 2020. Embedding ecological knowledge into artificial neural network training : A marine phytoplankton primary production model case study. Ecological Modelling, 421 : 108985. https://doi.org/10.1016/j.ecolmodel.2020.108985
- Mattei F., Scardi M., 2021. Mining Satellite data for extracting Chlorophyll a spatio-temporal patterns in the Mediterranean Sea, Environmental Modelling and Software, 150, 105353 https://doi.org/10.1016/j.envsoft.2022.105353
- Mattei F., Buonocore E., Franzese,P.P., Scardi M., 2021. Global assessment of marine phytoplankton primary production : Integrating machine learning and environmental accounting models. Ecological Modelling, 451 : 109578. https://doi.org/10.1016/j.ecolmodel.2021.109578
- Franceschini S., Mattei F., D’Andrea L., Di Nardi A., Fiorentino F., Garofalo G., Scardi M., Cataudella S., Russo T., 2019. Rummaging through the bin : Modelling marine litter distribution using Artificial Neural Networks. Marine Pollution Bulletin, 149 : 110580. https://doi.org/10.1016/j.marpolbul.2019.110580